The capacity of the rumen microbiota to produce volatile fatty acids (VFAs) has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Twenty one phyla were identified in the rumen microbiota of dairy cows. The rumen microbiota harbored 54.5±6.1 genera (mean ± SD) and 127.3±4.4 operational taxonomic units (OTUs), respectively. However, the core microbiome comprised of 26 genera and 82 OTUs. Butyrate infusion altered molar percentages of 3 major VFAs. Butyrate perturbation had a profound impact on the rumen microbial composition. A 72 h-infusion led to a significant change in the numbers of sequence reads derived from 4 phyla, including 2 most abundant phyla, Bacteroidetes and Firmicutes. As many as 19 genera and 43 OTUs were significantly impacted by butyrate infusion. Elevated butyrate levels in the rumen seemingly had a stimulating effect on butyrate-producing bacteria populations. The resilience of the rumen microbial ecosystem was evident as the abundance of the microorganisms returned to their pre-disturbed status after infusion withdrawal. Our findings provide insight into perturbation dynamics of the rumen microbial ecosystem and should guide efforts in formulating optimal uses of probiotic bacteria treating human diseases.
Background The functional annotation of genomes, including chromatin accessibility and modifications, is important for understanding and effectively utilizing the increased amount of genome sequences reported. However, while such annotation has been well explored in a diverse set of tissues and cell types in human and model organisms, relatively little data are available for livestock genomes, hindering our understanding of complex trait variation, domestication, and adaptive evolution. Here, we present the first complete global landscape of regulatory elements in cattle and explore the dynamics of chromatin states in rumen epithelial cells induced by the rumen developmental regulator—butyrate. Results We established the first global map of regulatory elements (15 chromatin states) and defined their coordinated activities in cattle, through genome-wide profiling for six histone modifications, RNA polymerase II, CTCF-binding sites, DNA accessibility, DNA methylation, and transcriptome in rumen epithelial primary cells (REPC), rumen tissues, and Madin-Darby bovine kidney epithelial cells (MDBK). We demonstrated that each chromatin state exhibited specific enrichment for sequence ontology, transcription, methylation, trait-associated variants, gene expression-associated variants, selection signatures, and evolutionarily conserved elements, implying distinct biological functions. After butyrate treatments, we observed that the weak enhancers and flanking active transcriptional start sites (TSS) were the most dynamic chromatin states, occurred concomitantly with significant alterations in gene expression and DNA methylation, which was significantly associated with heifer conception rate and stature economic traits. Conclusion Our results demonstrate the crucial role of functional genome annotation for understanding genome regulation, complex trait variation, and adaptive evolution in livestock. Using butyrate to induce the dynamics of the epigenomic landscape, we were able to establish the correlation among nutritional elements, chromatin states, gene activities, and phenotypic outcomes. Electronic supplementary material The online version of this article (10.1186/s12915-019-0687-8) contains supplementary material, which is available to authorized users.
Development of management paradigms that enhance the rate of gain and qualitative characteristics of beef carcass development has the potential to impact production and nutrient use efficiency but also mitigate losses to the environment. We used eight Black Angus beef steers (272.5 ± 17.6 kg initial body wt) fed a forage-based pelleted diet alone ( n = 4) or supplemented with sodium propionate included ( n = 4) for 42 days. High-quality RNA was extracted from the longissimus lumborum and subjected to transcriptome sequencing using RNA-seq technology. Trimmed reads were aligned to the bovine reference genome (Btau4.0, release 63) and uniquely mapped reads from control and propionate treatment groups were subject to further analysis using edgeR. Candidates were filtered to account for multiple testing and differentially expressed genes (153 at a false discovery rate of <5%) were analyzed using Gene Ontology (GO) analysis (GOseq) to select terms where enrichment had occurred. Significant GO terms included regulation of cholesterol transport, regulation of sterol transport, and cellular modified amino acid metabolic process. Furthermore, the top four identified gene networks included lipid metabolism, small molecule biochemistry, carbohydrate metabolism, and molecular transport-related categories. Notably, changes in lipid metabolism specific genes reflect both increased oxidative and lipid synthetic capacities. Metabolism-related gene changes are reflective of expected enhancements in lean tissue accretion patterns exhibited in steers where high ruminal propionate relative to other short chain fatty acids is observed. Propionate feeding induced increased N retention in rapidly growing Angus cattle, and the observed alterations in LL tissue lipid metabolism-related gene networks are consistent with enhanced cell formation and function (protein synthesis, and lipogenic vs. lipolytic activities).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.