Segmentation of liver tumors from Computerized Tomography (CT) images remains a challenge due to the natural variation in tumor shape and structure as well as the noise in CT images. A key assumption is that the performance of liver tumor segmentation depends on the characteristics of multiple features extracted from multiple filters. In this paper, we design an enhanced approach based on a two-class (liver, tumor) convolutional neural network that discriminates tumor as well as liver from CT images. First, the contrast and intensity values in CT images are adjusted and high frequencies are removed using Hounsfield units (HU) filtering and standardization. Then, the liver tumor is segmented from entire images with multiple filter U-net (MFU-net). Finally, a quantitative analysis is carried out to evaluate the segmentation results using three different methods: boundary-distance-based metrics, size-based metrics, and overlap-based metrics. The proposed method is validated on CT images from the 3Dircadb and LiTS dataset. The results demonstrate that the multiple filters are useful for extracting local and global feature simultaneously, minimizing the boundary distance errors, and our approach demonstrates better performance in heterogeneous tumor regions of CT images.
Nucleus segmentation and classification are crucial in pathology image analysis. Automated nuclear classification and segmentation methods support analysis and understanding of cell characteristics and functions, and allow the analysis of large-scale nuclear forms in the diagnosis and treatment of diseases. Common problems in these tasks arise from the inconsistent sizes and shapes of the cells in each pathology image. This study aims to develop a new method to address these problems based primarily on the horizontal and vertical distance network (HoVer-Net), multiple filter units, and attention gate mechanisms. The results of the study will significantly impact cell segmentation and classification by showing that a multiple filter unit improves the performance of the original HoVer-Net model. In addition, our experimental results show that the Mulvernet achieves outperforming results in both nuclei segmentation and classification compared to several methods. The ability to segment and classify different types of nuclei automatically has a direct influence on further pathological analysis, offering great potential not only to accelerate the diagnostic process in clinics but also for enhancing our understanding of tissue and cell properties to improve patient care and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.