Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfill diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations, and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk, and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.
We explored whether DNA-phylogeny-based and morphology-based genus concepts can be reconciled in the basidiomycete family Phanerochaetaceae. Our results show that macromorphology of fruiting bodies and hymenophore construction do not reflect monophyletic groups. However, by integrating micromorphology and re-defining genera, harmonization of DNA phylogeny and morphological genus concepts is possible in most cases. In the case of one genus (Phlebiopsis), our genetic markers could not resolve genus limits satisfactorily and a clear morphological definition could not be identified.We combine extended species sampling, microscopic studies of fruiting bodies and phylogenetic analyses of ITS, nLSU and rpb1 to revise genus concepts. Three new polypore genera are ascribed to the Phanerochaetaceae: Oxychaete gen. nov. (type Oxyporus cervinogilvus), Phanerina gen. nov. (type Ceriporia mellea), and Riopa (including Ceriporia metamorphosa and Riopa pudens sp. nov.). Phlebiopsis is extended to include Dentocorticium pilatii, further species of Hjortstamia and the monotypic polypore genus Castanoporus. The polypore Ceriporia inflata is combined into Phanerochaete.The identity of the type species of the genus Riopa, R. davidii, has been misinterpreted in the current literature. The species has been included in Ceriporia as a species of its own or placed in synonymy with Ceriporia camaresiana. The effort to properly define R. davidii forced us to study Ceriporia more widely. In the process we identified five closely related Ceriporia species that belong to the true Ceriporia clade (Irpicaceae). We describe those species here, and introduce the Ceriporia pierii group. We also select a lectotype and an epitype for Riopa metamorphosa and neotypes for Sporotrichum aurantiacum and S. aurantium, the type species of the anamorphic genus Sporotrichum, and recommend that teleomorphic Riopa is conserved against it. RESEARCH ARTICLEOtto Miettinen et al. / MycoKeys 17: 1-46 (2016) 2
In the present study, we investigate taxonomy of the Auriculariales with effused or cupulate, persistent basidiocarps; generic and species concepts are revised based on morphological and DNA evidences. The genus Eichleriella is reinstated to embrace ten closely related species with ellipsoid-ovoid basidia, and the genus type, Eichleriella incarnata, is placed to the synonyms of Eichleriella leucophaea. Eichleriella bactriana, Eichleriella desertorum and Eichleriella sicca are described as new to science. In addition, four species earlier treated as members of Exidiopsis or Heterochaete are combined to the genus. The genus name Heteroradulum (type Radulum kmetii) is introduced for seven species with large, obconical, stipitate basidia. Of them, Heteroradulum adnatum and Heteroradulum semis are described as new. Two new genera, Amphistereum (with two species, type Eichleriella schrenkii) and Sclerotrema (monotypic, type Exidiopsis griseobrunnea), are proposed; Hirneolina (monotypic, type H. hirneoloides) and Tremellochaete (with two species, type Exidia japonica) are restored as good genera. The type species of Heterochaete, H. andina, is congeneric with Exidiopsis (type E. effusa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.