ABSTRACT. -Global Real Time Control (RTC) of urban drainage system is increasingly seen as cost-effective solution in order to respond to increasing performance demand (e.g. reduction of Combined Sewer Overflow, protection of sensitive areas as bathing water etc.). The Dynamic Overflow Risk Assessment (DORA) strategy was developed to operate Urban Drainage Systems (UDS) in order to minimize the expected overflow risk by considering the water volume presently stored in the drainage network, the expected runoff volume based on a 2-hours radar forecast model and an estimated uncertainty of the runoff forecast. However, such temporal horizon (1-2 hours) is relatively short when used for the operation of large storage facilities, which may require a few days to be emptied. This limits the performance of the optimization and control in reducing combined sewer overflow and in preparing for possible flooding. Based on DORA's approach, this study investigated the implementation of long forecast horizon using an ensemble forecast from a Numerical Weather Prediction (NWP) model. The uncertainty of the prediction is characterized by an ensemble of 25 forecast scenarios. According to the status of the UDS and the forecasted runoff volumes, the objectives for the control strategies might vary from optimization of water volumes to reduction of CSO risk. Thus different modes are implemented in DORA-LF (Long Forecast) in order to adjust the control strategies to the situations. In order to handle the long forecast, the horizon is divided into multiple and variable time step. This new approach was tested on selected rain events and shows an improvement in the protection of sensitive areas during long or/and coupled events by allowing anticipated CSO in low sensitivity areas.
Abstract. Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run).This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial uses.
Abstract. Precipitation is the major perturbation to the flow in urban drainage and wastewater systems. Flow forecast, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimise the operation of Integrated Urban Drainage–Wastewater Systems (IUDWS) during both wet and dry weather periods. Numerical Weather Prediction (NWP) models have significantly improved in recent years; increasing their spatial and temporal resolution. Finer resolution NWP are suitable for urban catchment scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with Ensemble Prediction Systems (EPS). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain therefore errors will be made, decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The Relative Economic Value (REV) approach associates economic values to the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecasted). The specificity of this study is to optimise the energy consumption in IUDWS during low flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecasted). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.