Microbial communities are responsible for biological wastewater treatment, but our knowledge of their diversity and function is still poor. Here, we sequence more than 5 million high-quality, full-length 16S rRNA gene sequences from 740 wastewater treatment plants (WWTPs) across the world and use the sequences to construct the ‘MiDAS 4’ database. MiDAS 4 is an amplicon sequence variant resolved, full-length 16S rRNA gene reference database with a comprehensive taxonomy from domain to species level for all sequences. We use an independent dataset (269 WWTPs) to show that MiDAS 4, compared to commonly used universal reference databases, provides a better coverage for WWTP bacteria and an improved rate of genus and species level classification. Taking advantage of MiDAS 4, we carry out an amplicon-based, global-scale microbial community profiling of activated sludge plants using two common sets of primers targeting regions of the 16S rRNA gene, revealing how environmental conditions and biogeography shape the activated sludge microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 966 genera and 1530 species that represent approximately 80% and 50% of the accumulated read abundance, respectively. Finally, we show that for well-studied functional guilds, such as nitrifiers or polyphosphate-accumulating organisms, the same genera are prevalent worldwide, with only a few abundant species in each genus.
The bacterial microbiota plays an important role in the prolonged healing of chronic venous leg ulcers. The present study compared the bacterial diversity within ulcer material from 14 skin graft operations of chronic venous leg ulcers using culture-based methods and molecular biological methods, such as 16S rRNA gene sequencing, fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization. Each wound contained an average of 5.4 species but the actual species varied between wounds. The diversity determined by culture-based methods and the molecular biological methods was different. All the wounds contained Staphylococcus aureus, whereas Pseudomonas aeruginosa was in six out of 14 wounds. Molecular methods detected anaerobic pathogens in four ulcers that were not detected with anaerobic culture methods. Quantitative polymerase chain reaction was used to compare the abundance of S. aureus and P. aeruginosa at different locations in the ulcers and their numbers varied greatly between samples taken at different locations in the same ulcer. This should be considered when ulcers are investigated in routine clinical care. The differences between the results obtained with culture-based and molecular-based approaches demonstrate that the use of one approach alone is not able to identify all of the bacteria present in the wounds.Chronic venous leg ulcers (CVLU) are a debilitating and often painful disease that affects approximately 1% of the world's population.
Patients suffering from cystic fibrosis (CF) develop chronic lung infections because of highly viscous mucus, where bacteria can form biofilms. In this study, we investigated the microorganisms present in the lungs of end-stage and non-end-stage patients using standard culturing techniques and molecular methods. Tissue and sputum samples (n = 34) from explanted lungs of five end-stage patients were examined along with routine expectorates (n = 15) from 13 patients with non-end-stage CF, representing earlier stages of chronic lung infections. Previously, using peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH), we have shown that Pseudomonas aeruginosa was the sole pathogen in end-stage CF lungs (Pediatr Pulmonol 2009, 44: 547). In this study, this tendency was supported by the results of real-time PCR, confirming previous results obtained by standard culturing and 16S rRNA gene analysis (J Clin Microbiol 2011, 49: 4352). Conversely, the non-end-stage patients were found to harbor several species by culturing. PNA FISH confirmed heterogeneous microbiota and showed that the bacteria were located in monospecies aggregates with no apparent physical interaction between the different microcolonies. In conclusion, standard culturing identifies the dominating pathogens, which seem to reside in monospecies microcolonies. The possibility of signaling between the distinct microcolonies still has to be verified and elucidated.
Patients suffering from cystic fibrosis (CF) develop chronic lung infection. In this study, we investigated the microorganisms present in transplanted CF lungs (n ؍ 5) by standard culturing and 16S rRNA gene analysis. A correspondence between culturing and the molecular methods was observed. In conclusion, standard culturing seems reliable for the identification of the dominating pathogens.
Formation of biofilm is a prominent feature of prosthetic joint infections (PJIs) and constitutes a challenge to current sampling procedures and culture practices. Molecular techniques have a potential for improving diagnosis of biofilm-adapted, slow-growing and non-culturable bacteria. In this exploratory study we investigated the bacterial diversity in specimens from 22 patients clinically suspected of having PJIs. Bacteriological cultures were performed according to standard practice. A total of 55 specimens from 25 procedures ('specimen sets') were submitted to broad range 16S rRNA gene PCR, cloning, sequencing and phylogenetic analysis. More than 40 bacterial taxa within six phyla were identified in 14 specimen sets originating from 11 patients. Direct observation of biofilm was made in selected specimens by fluorescence in situ hydridization. 16S rRNA gene analysis and bacteriological cultures were concordant for 15/25 specimen sets (60%; five positive, 10 negative); additional taxa were detected in four sets by gene analysis, and discrepant results were obtained for six sets, five of which were negative on culture. Polymicrobial communities were revealed in 9/14 sets by gene analysis and 1/10 sets by culture (P < 0.05). Although our study was not conclusive, these findings are consistent with a primary role of biofilm formation in PJIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.