New knowledge about the gut microbiota and its interaction with the host’s metabolic regulation has emerged during the last few decades. Several factors may affect the composition of the gut microbiota, including dietary fiber. Dietary fiber is not hydrolyzed by human digestive enzymes, but it is acted upon by gut microbes, and metabolites like short-chain fatty acids are produced. The short-chain fatty acids may be absorbed into the circulation and affect metabolic regulation in the host or be a substrate for other microbes. Some studies have shown improved insulin sensitivity, weight regulation, and reduced inflammation with increases in gut-derived short-chain fatty acids, all of which may reduce the risk of developing metabolic diseases. To what extent a dietary intervention with fiber may affect the human gut microbiota and hence metabolic regulation, is however, currently not well described. The aim of the present review is to summarize recent research on human randomized, controlled intervention studies investigating the effect of dietary fiber on gut microbiota and metabolic regulation. Metabolic regulation is discussed with respect to markers relating to glycemic regulation and lipid metabolism. Taken together, the papers on which the current review is based, suggest that dietary fiber has the potential to change the gut microbiota and alter metabolic regulation. However, due to the heterogeneity of the studies, a firm conclusion describing the causal relationship between gut microbiota and metabolic regulation remains elusive.
The healthy Nordic diet has been previously shown to have health beneficial effects among subjects at risk of CVD. However, the extent of food changes needed to achieve these effects is less explored. The aim of the present study was to investigate the effects of exchanging a few commercially available, regularly consumed key food items (e.g. spread on bread, fat for cooking, cheese, bread and cereals) with improved fat quality on total cholesterol, LDL-cholesterol and inflammatory markers in a double-blind randomised, controlled trial. In total, 115 moderately hypercholesterolaemic, non-statin-treated adults (25-70 years) were randomly assigned to an experimental diet group (Ex-diet group) or control diet group (C-diet group) for 8 weeks with commercially available food items with different fatty acid composition (replacing SFA with mostly n-6 PUFA). In the Ex-diet group, serum total cholesterol (P < 0·001) and LDL-cholesterol (P < 0·001) were reduced after 8 weeks, compared with the C-diet group. The difference in change between the two groups at the end of the study was −9 and −11 % in total cholesterol and LDL-cholesterol, respectively. No difference in change in plasma levels of inflammatory markers (high-sensitive C-reactive protein, IL-6, soluble TNF receptor 1 and interferon-γ) was observed between the groups. In conclusion, exchanging a few regularly consumed food items with improved fat quality reduces total cholesterol, with no negative effect on levels of inflammatory markers. This shows that an exchange of a few commercially available food items was easy and manageable and led to clinically relevant cholesterol reduction, potentially affecting future CVD risk.
Gut microbiota have recently been suggested to play a part in low-grade systemic inflammation, which is considered a key risk factor for cardiometabolic disorders. Diet is known to affect gut microbiota; however, the effects of diet and dietary components on gut microbiota and inflammation are not fully understood. In the present review, we summarize recent research on human dietary intervention studies, investigating the effects of healthy diets or dietary components on gut microbiota and systemic inflammation. We included 18 studies that reported how different dietary components altered gut microbiota composition, short-chain fatty acid levels, and/or inflammatory markers. However, the heterogeneity among the intervention studies makes it difficult to conclude whether diets or dietary components affect gut microbiota homeostasis and inflammation. More appropriately designed studies are needed to better understand the effects of diet on the gut microbiota, systemic inflammation, and risk of cardiometabolic disorders.
Intake of fish and omega-3 (n-3) fatty acids is associated with a reduced concentration of plasma triacylglycerols (TAG) but the mechanisms are not fully clarified. Stearoyl-CoA desaturase-1 (SCD1) activity, governing TAG synthesis, is affected by n-3 fatty acids. Peripheral blood mononuclear cells (PBMC) display expression of genes involved in lipid metabolism. The aim of the present study was to estimate whether intake of lean and fatty fish would influence n-3 fatty acids composition in plasma phospholipids (PL), serum TAG, 18:1n-9/18:0 ratio in plasma PL, as well as PBMC gene expression of SCD1 and fatty acid synthase (FAS). Healthy males and females (n = 30), aged 20-40, consumed either 150 g of cod, salmon, or potato (control) daily for 15 days. During intervention docosahexaenoic acid (DHA, 22:6n-3) increased in the cod group (P < 0.05), while TAG concentration decreased (P < 0.05). In the salmon group both eicosapentaenoic acid (EPA, 20:5n-3) and DHA increased (P < 0.05) whereas TAG concentration and the 18:1n-9/18:0 ratio decreased (P < 0.05). Reduction of the 18:1n-9/18:0 ratio was associated with a corresponding lowering of TAG (P < 0.05) and an increase in EPA and DHA (P < 0.05). The mRNA levels of SCD1 and FAS in PBMC were not significantly altered after intake of cod or salmon when compared with the control group. In conclusion, both lean and fatty fish may lower TAG, possibly by reducing the 18:1n-9/18:0 ratio related to allosteric inhibition of SCD1 activity, rather than by influencing the synthesis of enzyme protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.