Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot stage microscopy, scanning electron microscopy), contact angle, and intrinsic dissolution rate (IDR). All crystalline ATC samples were found to be stable form I, however one sample possessed polymorphic impurity, evidenced in XRPD and DSC analysis. Amongst the amorphous ATC samples, XRPD demonstrated five samples to be amorphous 'form 27', while, one matched amorphous 'form 23'. Thermal behavior of amorphous ATC samples was compared to amorphous ATC generated by melt quenching in DSC. ATC was found to be an excellent glass former with T(g)/T(m) of 0.95. Residual crystallinity was detected in two of the amorphous samples by complementary use of conventional and modulated DSC techniques. The wettability and IDR of all amorphous samples was found to be higher than the crystalline samples. In conclusion, commercial ATC samples exhibited diverse solid state behavior that can impact the performance and stability of the dosage forms.
Poor biopharmaceutical performance of Biopharmaceutical Classification System (BCS) class II drug molecules is a major hurdle in the design and development of pharmaceutical formulations. Anisotropic surface chemistry of different facets in crystalline material affects physicochemical properties, such as wettability, of drugs. In the present investigation, a molecule-centered approach is presented toward crystal habit modification of celecoxib (CEL) and its effect on oral bioavailability. Two crystal habits of CEL, acicular crystal habit (CEL-A) and a plate-shaped crystal habit (CEL-P), were obtained by recrystallization from toluene at 25 and 60 °C, respectively. Compared to CEL-A, CEL-P exhibited significantly faster dissolution kinetics in aqueous media and significantly higher C max and shorter T max in an oral bioavailability study. The significant enhancement in dissolution and biopharmaceutical performance of CEL-P was attributed to its more abundant hydrophilic surfaces compared to CEL-A. This conclusion was supported by wettability and surface free energy determination from contact angle measurements and surface chemistry determination by X-ray photoelectron spectroscopy (XPS), crystal structure modeling, and crystal face indexation.
According to the year 2003 survey of pediatricians by the American Association of Pediatrics, unpleasant taste was the biggest barrier for completing treatment in pediatrics. The field of taste masking of active pharmaceutical ingredients (API) has been continuously evolving with varied technologies and new excipients. The article reviews the trends in taste masking technologies by studying the current state of the art patent database for the span of year 1997 to 2007. The worldwide database of European patent office (http://ep.espacenet.com) was employed to collect the patents and patent applications. It also discusses the possible reasons for the change of preferences in the taste masking technologies with time. The prime factors critical to the selection of an optimal taste masking technique such as the extent of drug bitterness, solubility, particle characteristics, dosage form and dose are briefly discussed.
In the present study, the role of α-relaxation toward isothermal crystallization of amorphous celecoxib was studied using dielectric spectroscopy (DES). The dielectric response of the α-relaxation was measured as a function of frequency (10⁻¹ to 10⁶ Hz), isothermally at every 4 K interval in the range of 303.15 to 443.15 K. The dielectric loss spectrum at each temperature was analyzed using the Havriliak Negami (HN) equation to extract the characteristic relaxation time, τ(HN). Two Vogel-Fulcher-Tammann (VFT) functions were required for representing the temperature dependence of τ(HN) across the temperature range of study. The VFT fit parameters obtained from the two regions varied drastically pointing toward the underlying differences in the dynamics of relaxation above and below the crossover. Later, in situ isothermal crystallization experiments were performed at 363.15, 368.15, 373.15, and 378.15 K. The conversion rate, obtained from the normalized dielectric strength, was modeled using the Avrami model, which indicated the possibility of different crystallization mechanism at higher crystallization temperatures. HN shape parameters, α(HN) and product of α(HN) and β(HN), were analyzed during the course of crystallization to understand the dynamics of amorphous phase when crystallites were being evolved. HN shape parameters indicated α-like motions were affected, whereas β-like remained unaffected by the crystallization temperature. Characteristic crystallization time, τ(cr), obtained from Avrami fits, showed Arrhenius type of temperature dependence (R² = 0.999). A plot between log τ(cr) and log τ(HN) show a linear regression with R² of 0.997 indicating the direct correlation between these two phenomena. However, the coupling coefficient was found to be varying within the temperature range of study, indicating tendency of crystallization to be more diffusion controlled at higher crystallization temperatures. With different crystalline solid phase crystallizing at higher crystallization temperature, complemented with direct correlation between log τ(cr) and log τ(HN), Avrami modeling of crystallization and HN shape parameter analysis, the role of α-relaxation in the crystallization of amorphous celecoxib at T > T(g) is emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.