Plants respond to various abiotic and biotic stress conditions through accumulation of phenolic compounds. The specificity of these phenolic compounds accumulation depends on the type of stress condition and the response of plant species. Light stress induces biosynthesis of phenolic acids and flavonoids in plants. Temperature stress initially induces biosynthesis of osmoprotective compounds and then later stimulates synthesis of antioxidant enzymes and antioxidant compounds such as flavonoids, tannins and phenolic acids in plant cells. Salinity causes oxidative stress in plants by inducing production of reactive oxygen species. To resist against oxidative stress plants produce polyphenols, flavonoids, anthocyanins, phenolic acids and phenolic terpenes. Plants biosynthesize phenols and flavonoids during heavy metal stress.to scavenge the harmful reactive oxygen species and to detoxify the hydrogen peroxide. Plants accumulate phenols at the infection sites to slow down the growth of microbial pathogens and restrict them at infected site. Plants also accumulates salicylic acid and H2O2 at the infection site to induce the systemic acquired resistance (SAR) against microbial pathogens. Plants accumulate phenolic compounds which act as inhibitor or toxicant to harmful nematodes, insects and herbivores. Hence, phenols regulate crucial physiological functions in plants to resist against different stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.