Present review addresses the advances made in the understanding of biogenesis of plant small RNAs and their role in plant development. We discuss the elaborate role of microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) in various aspects of plant growth and development and highlight relevance of small RNA mobility. Small non-coding RNAs regulate various aspects of plant development. Small RNAs (sRNAs) of 21-24 nucleotide length are derived from double-stranded RNAs through the combined activity of several biogenesis and processing components. These sRNAs function by negatively regulating the expression of target genes. miRNAs and ta-siRNAs constitute two important classes of endogenous small RNAs in plants, which play important roles in plant growth and developmental processes like embryogenesis, organ formation and patterning, shoot and root growth, and reproductive development. Biogenesis of miRNAs is a multistep process which includes transcription, processing and modification, and their loading onto RNA-induced silencing complex (RISC). RISC-loaded miRNAs carry out post-transcriptional silencing of their target(s). Recent studies identified orthologues of different biogenesis components of novel and conserved small RNAs from different model plants. Although many small RNAs have been identified from diverse plant species, only a handful of them have been functionally characterized. In this review, we discuss the advances made in understanding the biogenesis, functional conservation/divergence in miRNA-mediated gene regulation, and the developmental role of small RNAs in different plant species.
Cellular sugar status is essentially maintained during normal growth conditions but is impacted negatively during various environmental perturbations. Drought presents one such unfavorable environmental cue that hampers the photosynthetic fixation of carbon into sugars and affects their transport by lowering the cellular osmotic potential. The transport of cellular sugar is facilitated by a specific set of proteins known as sugar transporters. These transporter proteins are the key determinant of influx/ efflux of various sugars and their metabolite intermediates that support the plant growth and developmental process. Abiotic stress and especially drought stress‐mediated injury results in reprogramming of sugar distribution across the cellular and subcellular compartments. Here, we have reviewed the imperative role of sugar accumulation, signaling, and transport under typical and atypical stressful environments. We have discussed the physiological effects of drought on sugar accumulation and transport through different transporter proteins involved in monosaccharide and disaccharide sugar transport. Further, we have illustrated sugar‐mediated signaling and regulation of sugar transporter proteins along with the overall crosstalk of this signaling with the phytohormone module of abiotic stress response under osmotic stress. Overall, the present review highlights the critical role of sugar transport, distribution and signaling in plants under drought stress conditions.
Endophytes are a potent source of bioactive compounds that mimic plant-based metabolites. The relationship of host plant and endophyte is significantly associated with alteration in fungal colonisation and the extraction of endophyte-derived bioactive compounds. Screening of fungal endophytes and their relationship with host plants is essential for the isolation of bioactive compounds. Numerous bioactive compounds with antioxidant, antimicrobial, anticancer, and immunomodulatory properties are known to be derived from fungal endophytes. Bioinformatics tools along with the latest techniques such as metabolomics, next-generation sequencing, and metagenomics multilocus sequence typing can potentially fill the gaps in fungal endophyte research. The current review article focuses on bioactive compounds derived from plantassociated fungal endophytes and their pharmacological importance. We conclude with the challenges and opportunities in the research area of fungal endophytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.