Millions of memes are created and shared every day on social media platforms. Memes are a great tool to spread humour. However, some people use it to target an individual or a group generating offensive content in a polite and sarcastic way. Lack of moderation of such memes spreads hatred and can lead to depression like psychological conditions. Many successful studies related to analysis of language such as sentiment analysis and analysis of images such as image classification have been performed. However, most of these studies rely only upon either one of these components. As classifying meme is one problem which cannot be solved by relying upon only any one of these aspects, the present work identifies, addresses, and ensembles both the aspects for analyzing such data. In this research, we propose a solution to the problems in which the classification depends on more than one model. This paper proposes two different approaches to solve the problem of identifying hate memes. The first approach uses sentiment analysis based on image captioning and text written on the meme. The second approach is to combine features from different modalities. These approaches utilize a combination of glove, encoder-decoder, and OCR with Adamax optimizer deep learning algorithms. Facebook Challenge Hateful Meme Dataset is utilized which contains approximately 8500 meme images. Both the approaches are implemented on the live challenge competition by Facebook and predicted quite acceptable results. Both approaches are tested on the validation dataset, and results are found to be promising for both models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.