Video transcoding is an increasingly important application in the streaming media industry. It has become important to investigate the optimisation of transcoder parameters for a single clip simply because of the immense number of playbacks for popular clips. In this paper, we explore the use of a canned optimiser to estimate the optimal Rate-Distortion (RD) tradeoff achievable for a particular clip. We show that by adjusting the Lagrange multiplier in RD optimisation on keyframes alone we can achieve more than 10× the previous BD-Rate gains possible without affecting quality for any operating point.
This study examines the relationship between H.264 video compression and the performance of an object detection network (YOLOv5). We curated a set of 50 surveillance videos and annotated targets of interest (people, bikes, and vehicles). Videos were encoded at 5 quality levels using Constant Rate Factor (CRF) values in the set {22,32,37,42,47}. YOLOv5 was applied to compressed videos and detection performance was analyzed at each CRF level. Test results indicate that the detection performance is generally robust to moderate levels of compression; using a CRF value of 37 instead of 22 leads to significantly reduced bitrates/file sizes without adversely affecting detection performance. However, detection performance degrades appreciably at higher compression levels, especially in complex scenes with poor lighting and fast-moving targets. Finally, retraining YOLOv5 on compressed imagery gives up to a 1% improvement in F1 score when applied to highly compressed footage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.