The development of Coronary Artery Disease (CAD), one of the most prevalent diseases in the world, is heavily influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist healthcare practitioners in timely detection of CAD, and ultimately, may improve outcomes. In this study, we have applied six different ML algorithms to predict the presence of CAD amongst patients listed in an openly available dataset provided by the University of California Irvine (UCI) Machine Learning Repository, named "the Cleveland dataset." All six ML algorithms achieved accuracies greater than 80%, with the "Neural Network" algorithm achieving accuracy greater than 93%. The recall achieved with the "Neural Network" model is also highest of the six models (0.93). Additionally, five of the six algorithms resulted in very similar AUC-ROC curves. The AUC-ROC curve corresponding to the "Neural Network" algorithm is slightly steeper implying higher "true positive percentage" achieved with this model. We also extracted the variables of importance in the "Neural Network" model to help in the risk assessment. We have released the full computer code generated in this study in the public domain as a preliminary effort toward developing an open solution for predicting the presence of coronary artery disease in a given population and present a workflow model for implementing a possible solution.
SCC (self-compacting concrete) is a high-flowing concrete that blasts into structures. Many academics have been interested in using an artificial neural network (ANN) to forecast concrete strength in recent years. As a result, the goal of this study is to confirm the various possibilities of using an artificial neural network (ANN) to detect the features of SCC when Portland Pozzolana Cement (PPC) is partially substituted with biowaste such as Bagasse Ash (BA) and Rice Husk Ash (RHA) (RHA). Specialist systems based on the fully connected cascade (FCC) architecture in artificial neural networks (ANN) are used to estimate the compressive toughness of SCC. The research results are confirmed with the forecasting results of ANN utilizing 73 trial datasets of differentiation focus proposals of cement, BA, and RHA containing parameters such as initial setting time (IST), final setting time (FST), and standard consistency. Experiments to determine compressive strength for a wider range of mixed prepositions will result in higher project expenses and delays. So, an expert system ANN is used to find the standard consistency, setting time, and compressive strength for the intermediate mix propositions according to IS 10262:2009. The experimental results of compressive strength for 28 days are considered, in which 70% was used to train the ANN and 30% was utilized for testing the accuracy of the predicted compressive strength for the intermediate mix proposition. Using all of the datasets, the number of hidden layers used for compressive strength prediction for intermediate mix proposal is determined in the first step. The compressive strength for the intermediate mix preposition was identified in the second phase of the research, using the number of hidden layers determined in the first phase. The results were validated using the correlation coefficient (R) and root mean square error (RMSE) obtained from ANN, resulting in an acceptance range of 97 percent to 99 percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.