Three different polarizable ion models for molten AgBr have been studied by molecular dynamics simulations. The three models are based on a rigid ion model (RIM) with a pair potential of the type proposed by Vashishta and Rahman for α-AgI, to which the induced dipole polarization of the ions is added. In the first (PIM1) the dipole moments are only induced by the local electric field, while in the other two (PIM1s and PIM2s) a short-range overlap induced polarization opposes the electrically induced dipole moments. In the PIM1 and the PIM1s only the anions are assumed polarizable, while in the PIM2s both species are polarizable. Long molecular dynamics simulations show that the PIM2s is an unphysical model since, for some improbable but possible critical configurations, the ions become infinitely polarized. The results of using the PIM1, the PIM1s, as well as those of the simple RIM, have been compared for the static structure and ionic transport properties. The PIM1 reproduces the broad main peak of the total structure factor present in the neutron diffraction data, although the smoothed three-peak feature of this broad peak is slightly overestimated. The structural results for the PIM1s are intermediate between those for the RIM and the PIM1, but fail to reproduce the experimental features within the broad principal peak. Concerning the ionic transport properties, the value of the conductivity obtained using PIM1 is in good agreement with experimental values, while the self-diffusion coefficients and the conductivity for the PIM1s are lower than the corresponding values using the PIM1 and the RIM..
Three different models of AgI are studied by molecular dynamics simulations. The first one is the rigid ion model (RIM) with the effective pair potential of the Vashishta and Rahman form and the parametrization proposed by Shimojo and Kobayashi. The other two are polarizable ion models in which the induced polarization effects have been added to the RIM effective pair potential. In one of them (PIM1), only the anions are assumed to be polarizable by the local electric field. In the other one (PIM2s), the silver polarization is also included, and a short-range overlap-induced polarization opposes the electrically induced dipole moments. This short-range polarization is proved to be necessary to avoid overpolarization when both species are assumed to be polarizable. The three models reproduce the superionic character of alpha-AgI at 573 K and the liquid behavior of molten AgI at 923 K. The averaged spatial distribution of the cations in the alpha-phase obtained for PIM1 appears to be in better agreement with experimental data analysis. The PIM1 also reproduces the structure factor prepeak at about 1 A(-1) observed from neutron diffraction data of molten AgI. The three models retain in the liquid phase the superionic character of alpha-AgI, as the mobility of the cations is significantly larger than that for the anions. The ionic conductivity for the polarizable ion models is in better agreement with experimental data for alpha-AgI and molten AgI.
The results are reported of the molecular dynamics simulations of the coherent static structure factor of molten AgI at 923 K using a polarizable ion model. This model is based on a rigid ion potential, to which the many body interactions due to the anions induced polarization are added. The calculated structure factor is in better agreement with recent neutron diffraction data than that obtained by using simple rigid ion pair potentials. The Voronoi-Delaunay method has been applied to study the relationship between voids in the spatial distribution of cations and the prepeak of the structure factor.
The structure, the ionic transport properties, and the dynamics of long-wavelength charge-density fluctuations, for two polarizable point dipole models of molten NaI, have been studied by molecular dynamics simulations. These models are based on a rigid ion potential to which the induced dipole polarization of the anions is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and short-range damping interactions that oppose the electrically induced dipole moments. The two polarizable ion models differ only in the range of the damping polarization interactions. The influence of the induced anion polarization on the different properties of simulated molten NaI is discussed.
The structure factors of the ionic liquid mixture Ag(Br(0.7)I(0.3)) at three temperatures, 723, 923, and 1023 K, as well as of the pure molten AgI at 923 K and the pure molten AgBr at 773 and 923 K, were studied experimentally and by means of molecular dynamics simulations. The experiments were carried out using the high intensity total scattering time-of-flight spectrometer, HIT-II, at the KENS spallation neutron source in Japan. The experimental data are very reliable, with the possible exception of the small momentum transfer region, whose accessibility is limited by neutron energy and detector positions. The simulations made use of the semiempirical rigid ion potentials of the Vashishta-Rahman [Phys. Rev. Lett. 40, 1337 (1978)] type using a new set of parameters appropriate for the mixture. Within the known constraints of the pairwise rigid ion potentials, the simulated structure factors are in fair agreement with experiment. The results for the pair distribution functions suggest that the molten mixture retains the superionic character found in previous calculations of both the AgI and AgBr melts. This suggestion is confirmed by the results for the self-diffusion coefficients. Values obtained for the ionic conductivities are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.