BackgroundTakayasu’s arteritis (TA) is a chronic inflammatory disease affecting the large arteries and their branches; its etiology is still unknown. In individuals suffering from TA, arterial inflammation progresses to stenosis and/or occlusion, leading to organ damage and affecting survival. Relation of TA with Mycobacterium tuberculosis has been known, but there have been only a few systematic studies focusing on this association. The IS6110 sequence identifies the Mycobacterium tuberculosis complex and the HupB establishes the differences between M. tuberculosis and M. bovis. Our objective was to search the presence of IS6110 and HupB genes in aorta of patients with TA.MethodsWe analyzed aorta tissues embedded in paraffin from 5760 autopsies obtained from our institution, we divided the selected samples as cases and controls; Cases: aortic tissues of individuals with Takayasu’s arteritis. Control positive: aortic tissues (with tuberculosis disease confirmed) and control negative with other disease aortic (atherosclerosis).ResultsOf 181 selected aorta tissues, 119 fulfilled the corresponding criteria for TA, TB or atherosclerosis. Thus 33 corresponded to TA, 33 to tuberculosis (TB) and 53 to atherosclerosis. The mean age was 22 ± 13, 41 ± 19, and 57 ± 10, respectively. IS6110 and HupB sequences were detected in 70% of TA tissues, 82% in tuberculosis, and in 32% with atherosclerosis. Important statistical differences between groups with TA, tuberculosis versus atherosclerosis (p = 0.004 and 0.0001, respectively) were found.ConclusionWe identified a higher frequency of IS6110 and HupB genes in aortic tissues of TA patients. This data suggests that arterial damage could occur due to previous infection with M. tuberculosis.
In the presence of K(+), addition of ATP or ethanol to yeast mitochondria triggers the depletion of the transmembrane potential (DeltaPsi) and this is prevented by millimolar concentrations of phosphate (PO(4)). Different monovalent and polyvalent anions were tested for their protective effects on mitochondria from Saccharomyces cerevisiae. Only arsenate (AsO(4)) and sulfate (SO(4)) were as efficient as PO(4) to protect mitochondria against the K(+) mediated swelling, depletion of the DeltaPsi, and decrease in the ratio of uncoupled state to state 4 respiration rates. Protection by PO(4), SO(4) or AsO(4) was inhibited by mersalyl, suggesting that these anions interact with a site located in the matrix side. In addition, the effects of SO(4) and AsO(4) on the F(1)F(0)-ATPase were tested: both SO(4) and AsO(4) inhibited the synthesis of ATP following competitive kinetics against PO(4) and non-competitive kinetics against ADP. The mersalyl sensitive uptake of (32)PO(4) was not inhibited by SO(4) or AsO(4), suggesting that the synthesis of ATP was inhibited at the F(1)F(0)-ATPase. The hydrolysis of ATP was not inhibited, only a stimulation was observed when AsO(4) or sulfite (SO(3)) were added. It is suggested that the structure and charge similarities of PO(4), AsO(4) and SO(4) result in undiscriminated binding to at least two sites located in the mitochondrial matrix: at one site, occupation by any of these three anions results in protection against uncoupling by K(+); at the second site, in the F(1)F(0)-ATPase, AsO(4) and SO(4) compete for binding against PO(4) leading to inhibition of the synthesis of ATP.
The K+ uptake pathways in yeast mitochondria are still undefined. Nonetheless, the K+-mediated mitochondrial swelling observed in the absence of phosphate (PO4) and in the presence of a respiratory substrate has led to propose that large K+ movements occur in yeast mitochondria. Thus, the uptake of K+ by isolated yeast mitochondria was evaluated. Two parallel experiments were conducted to evaluate K+ transport; these were mitochondrial swelling and the uptake of the radioactive K+ analog 86Rb+. The opening of the yeast mitochondrial unspecific channel (YMUC) was regulated by different PO4 concentrations. The high protein concentrations used to measure 86Rb+ uptake resulted in a slight stabilization of the transmembrane potential at 0.4 mM PO4 but not at 0 or 4 mM PO4. At 4 mM PO4 swelling was inhibited while, in contrast, 86Rb+ uptake was still observed. The results suggest that an energy-dependent K+ uptake mechanism was unmasked when the YMUC was closed. To further analyze the properties of this K+ uptake system, the Mg2+ and quinine sensitivity of both swelling and 86Rb+ uptake were evaluated. Under the conditions where the unspecific pore was closed, K+ transport sensitivity to Mg2+ and quinine increased. In addition, when Zn2+ was added as an antiport inhibitor, uptake of 86Rb+ increased. It is suggested that in yeast mitochondria, the K+ concentration is highly regulated by the equilibrium of uptake and exit of this cation through two specific transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.