Abstract-During the last years, several time-frequency decomposition tools have been applied for the diagnosis of induction motors, for those cases in which the traditional procedures, such as the Motor Current Signature Analysis (MCSA), cannot yield the necessary response. Among them, the Cohen distributions have been widely selected to study transient and even stationary operation due to their high resolution and detailed information provided at all frequencies. Their main drawback, the cross-terms, has been tackled either modifying the distribution, or carrying out a pretreatment of the signal before computing its time-frequency decomposition. In this paper, a filtering process is proposed that uses advanced notch filters in order to remove constant frequency components present in the current of an induction motor, prior to the computation of its distribution, to study rotor asymmetries and mixed eccentricities. In transient operation of machines directly connected to the grid, this procedure effectively eliminates most of the artifacts that have prevented the use of these tools, allowing a wideband analysis and the definition of a precise quantification parameter able to follow the evolution of their state.
The stray flux that is present in the vicinity of an induction motor is a very interesting information source to detect several types of failures in these machines. The analysis of this quantity can be employed, in some cases, as a supportive tool to complement the diagnosis provided by other quantities. In other cases, when no other motor quantities are available, stray flux analysis can become one of the few alternatives to evaluate the motor condition. Its non-invasive nature, low cost and easy implementation makes it a very interesting option that requires further investigation. The aim of this work is to evaluate the suitability of the stray flux analysis under the starting transient as a way to detect certain faults in induction motors (broken rotor bars and misalignments), even when these types of faults coexist in the motor. To this end, advanced signal processing tools will be applied. Several positions of the flux sensors are considered in this study. Also, for the first time, a fault indicator based on the stray flux analysis under the starting is introduced and its sensitivity is compared versus other indicators relying on other quantities. It must be emphasized that, since the capture of the transient and steady-state flux signals can be carried out in the same measurement, the application of the approach presented in this work is straightforward and its derived information may become crucial for the diagnosis of some faults.
The diagnosis of induction motors through the spectral analysis of the stator current allows for the online identification of different types of faults. One of the major difficulties of this method is the strong influence of the mains component of the current, whose leakage can hide fault harmonics, especially when the machine is working at very low slip. In this paper, a new method for demodulating the stator current prior to its spectral analysis is proposed, using the Teager-Kaiser energy operator. This method is able to remove the mains component of the current with an extremely low usage of computer resources, because it operates just on three consecutive samples of the current. Besides, this operator is also capable of increasing the signal-to-noise ratio of the spectrum, sharpening the spectral peaks that reveal the presence of the faults. The proposed method has been deployed to a PC-based offline diagnosis system and tested on commercial induction motors with broken bars, mixed eccentricity, and single-point bearing faults. The diagnostic results are compared with those obtained through the conventional motor current signature analysis method.
The diagnosis of induction machines through the use of methods based on the study of the startup current has become an issue of special interest. These techniques may provide, in certain situations (unbalanced supply voltages, load torque oscillations, variable load…) and for certain faults (broken bars, eccentricity, stator short circuit,) substantial advantages in comparison with the classical method, based on the Fourier spectrum of the steady-state current. Nevertheless, in the case of rotor asymmetries, these transient-based techniques have been mainly focused on the tracing of the lower sideband harmonic (LSH). In this paper, a wideband diagnosis method is proposed, in which the Wigner-Ville distribution is applied to the detection of eccentricity and other high-order components also introduced by the rotor asymmetry. It is shown that the proposed wide band analysis might help to reach a more reliable diagnosis conclusion in cases in which the tracing of commonly used harmonics may be difficult (inter-bar currents, load torque oscillations, non stationary regimes…). An evaluation 2 of the method is carried out through simulations and laboratory tests. The results show the potential of the tool for the detection and quantification of these components as a basis to diagnose such faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.