The last years have seen the development of many credit scoring models for assessing the creditworthiness of loan applicants. Traditional credit scoring methodology has involved the use of statistical and mathematical programming techniques such as discriminant analysis, linear and logistic regression, linear and quadratic programming, or decision trees. However, the importance of credit grant decisions for financial institutions has caused growing interest in using a variety of computational intelligence techniques. This paper concentrates on evolutionary computing, which is viewed as one of the most promising paradigms of computational intelligence. Taking into account the synergistic relationship between the communities of Economics and Computer Science, the aim of this paper is to summarize the most recent developments in the application of evolutionary algorithms to credit scoring by means of a thorough review of scientific articles published during the period 2000-2012.
Abstract. This paper introduces a new metric, named Index of Balanced Accuracy, for evaluating learning processes in two-class imbalanced domains. The method combines an unbiased index of its overall accuracy and a measure about how dominant is the class with the highest individual accuracy rate. Some theoretical examples are conducted to illustrate the benefits of the new metric over other well-known performance measures. Finally, a number of experiments demonstrate the consistency and validity of the evaluation method here proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.