Ketamine has emerged as a novel strategy to treat refractory depression, producing rapid remission, but elicits some side effects that limit its use. In an attempt to investigate a safer compound that may afford an antidepressant effect similar to ketamine, this study examined the effects of the ergogenic compound creatine in a model of depression, and the involvement of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in its effect. In order to induce a depressive-like behavior, mice were administered with corticosterone (20 mg/kg, per os (p.o.)) for 21 days. This treatment increased immobility time in the tail suspension test (TST), an effect abolished by a single administration of creatine (10 mg/kg, p.o.) or ketamine (1 mg/kg, i.p.), but not by fluoxetine (10 mg/kg, p.o., conventional antidepressant). Treatment of mice with wortmannin (PI3K inhibitor, 0.1 μg/site, intracerebroventricular (i.c.v.)) or rapamycin (mTOR inhibitor, 0.2 nmol/site, i.c.v.) abolished the anti-immobility effect of creatine and ketamine. None of the treatments affected locomotor activity of mice. The immunocontents of p-mTOR, p-p70S6 kinase (p70S6K), and postsynaptic density-95 protein (PSD95) were increased by creatine and ketamine in corticosterone or vehicle-treated mice. Moreover, corticosterone-treated mice presented a decreased hippocampal brain-derived neurotrophic factor (BDNF) level, an effect abolished by creatine or ketamine. Altogether, the results indicate that creatine shares with ketamine the ability to acutely reverse the corticosterone-induced depressive-like behavior by a mechanism dependent on PI3K/AKT/mTOR pathway, and modulation of the synaptic protein PSD95 as well as BDNF in the hippocampus, indicating the relevance of targeting these proteins for the management of depressive disorders. Moreover, we suggest that creatine should be further investigated as a possible fast-acting antidepressant.
Evidence has indicated that the practice of physical exercise has antidepressant effects that might be associated with irisin release and BDNF signaling. In this study we investigated the effects of the central administration of irisin or BDNF in predictive tests of antidepressant properties paralleled with the gene expression of peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the hippocampus and prefrontal cortex of mice. Irisin (0.5-1 ng/mouse, i.c.v.) reduced the immobility time in the tail suspension test (TST) and forced swim test (FST), without altering locomotion in the open field test (OFT). Irisin reduced the immobility time in the TST up to 6 h after its administration. Irisin administration (6 h) increased PGC-1α mRNA in the hippocampus and prefrontal cortex and reduced (1 h) PGC-1α mRNA in the prefrontal cortex. FNDC5 and BDNF mRNA expression was decreased (1 h) in both structures and remained reduced up to 6 h in the prefrontal cortex. Moreover, BDNF administered at 0.25 μg/mouse, i.c.v. (1 and 6 h before the test) reduced the immobility time in the TST. BDNF administration reduced PGC-1α mRNA in the hippocampus (6 h) and prefrontal cortex (1 and 6 h). It also increased FNDC5 mRNA expression in the hippocampus (1 and 6 h), but reduced the expression of this gene and also BDNF mRNA in the prefrontal cortex (1 and 6 h). None of the treatments altered BDNF protein levels in both structures. In conclusion, irisin presents a behavioral antidepressant profile similar to BDNF, an effect associated with the modulation of gene expression of PGC-1α, FNDC5 and BDNF, reinforcing the pivotal role of these genes in mood regulation.
Experimental autoimmune encephalomyelitis (EAE) is the most used animal model of multiple sclerosis (MS) for the development of new therapies. Dopamine receptors can modulate EAE and MS development, thus highlighting the potential use of dopaminergic agonists in the treatment of MS, which has been poorly explored. Herein, we hypothesized that pramipexole (PPX), a dopamine D2/D3 receptor-preferring agonist commonly used to treat Parkinson's disease (PD), would be a suitable therapeutic drug for EAE. Thus, we report the effects and the underlying mechanisms of action of PPX in the prevention of EAE. PPX (0.1 and 1 mg/kg) was administered intraperitoneally (i.p.) from day 0 to 40 post-immunization (p.i.). Our results showed that PPX 1 mg/kg prevented EAE development, abolishing EAE signs by blocking neuroinflammatory response, demyelination, and astroglial activation in spinal cord. Moreover, PPX inhibited the production of inflammatory cytokines, such as IL-17, IL-1β, and TNF-α in peripheral lymphoid tissue. PPX was also able to restore basal levels of a number of EAE-induced effects in spinal cord and striatum, such as reactive oxygen species, glutathione peroxidase, parkin, and α-synuclein (α-syn). Thus, our findings highlight the usefulness of PPX in preventing EAE-induced motor symptoms, possibly by modulating immune cell responses, such as those found in MS and other T helper cell-mediated inflammatory diseases.
Multiple sclerosis (MS) is a T cell autoimmune, inflammatory, and demyelinating disease of the central nervous system (CNS). Currently available therapies have partially effective actions and numerous side reactions. Inosine, an endogenous purine nucleoside, has immunomodulatory, neuroprotective, and analgesic properties. Herein, we evaluated the effect of inosine on the development and progression of experimental autoimmune encephalomyelitis (EAE), an experimental model of MS. Inosine (1 or 10 mg/kg, i.p.) was administrated twice a day for 40 days. Immunological and inflammatory responses were evaluated by behavioral, histological, immunohistochemical, ELISA, RT-PCR, and Western blotting analysis. The administration of inosine exerted neuroprotective effects against EAE by diminishing clinical signs, including thermal and mechanical hyperalgesia, as well as weight loss typical of the disease. These beneficial effects of inosine seem to be associated with the blockade of inflammatory cell entry into the CNS, especially lymphocytes, thus delaying the demyelinating process and astrocytes activation. In particular, up-regulation of IL-17 levels in the secondary lymphoid tissues, a result of EAE, was prevented by inosine treatment in EAE mice. Additionally, inosine consistently prevented A2AR up-regulation in the spinal cord, likely, through an ERK1-independent pathway. Altogether, these results allow us to propose that this endogenous purine might be a putative novel and helpful tool for the prevention of autoimmune and neurodegenerative diseases, such as MS. Thus, inosine could have considerable implications for future therapies of MS, and this study may represent the starting point for further investigation into the role of inosine and adenosinergic receptors in neuroinflammation processes. Graphical Abstract Preventive treatment with inosine inhibits the development and progression of EAE in C57Bl/6 mice. Furthermore, neuroinflammation and demyelinating processes were blocked by inosine treatment. Additionally, inosine consistently inhibited IL-17 levels in peripheral lymphoid tissue, as well as IL-4 levels and A2AR up-regulation in the spinal cord, likely, through an ERK1-independent pathway. EAE: experimental autoimmune encephalomyelitis; MS: multiple sclerosis; A2AR: adenosine A2A receptor; IL-17: interleukin-17; IL-4: interleukin-4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.