Lower-limb robotic exoskeletons are wearable devices that can be beneficial for people with lower-extremity motor impairment because they can be valuable in rehabilitation or assistance. These devices can be controlled mentally by means of brain–machine interfaces (BMI). The aim of the present study was the design of a BMI based on motor imagery (MI) to control the gait of a lower-limb exoskeleton. The evaluation is carried out with able-bodied subjects as a preliminary study since potential users are people with motor limitations. The proposed control works as a state machine, i.e., the decoding algorithm is different to start (standing still) and to stop (walking). The BMI combines two different paradigms for reducing the false triggering rate (when the BMI identifies irrelevant brain tasks as MI), one based on motor imagery and another one based on the attention to the gait of the user. Research was divided into two parts. First, during the training phase, results showed an average accuracy of 68.44 ± 8.46% for the MI paradigm and 65.45 ± 5.53% for the attention paradigm. Then, during the test phase, the exoskeleton was controlled by the BMI and the average performance was 64.50 ± 10.66%, with very few false positives. Participants completed various sessions and there was a significant improvement over time. These results indicate that, after several sessions, the developed system may be employed for controlling a lower-limb exoskeleton, which could benefit people with motor impairment as an assistance device and/or as a therapeutic approach with very limited false activations.
Motor imagery (MI) is one of the most common paradigms used in brain-computer interfaces (BCIs). This mental process is defined as the imagination of movement without any motion. In some lower-limb exoskeletons controlled by BCIs, users have to perform MI continuously in order to move the exoskeleton. This makes it difficult to design a closed-loop control BCI, as it cannot be assured that the analyzed activity is not related to motion instead of imagery. A possible solution would be the employment of virtual reality (VR). During VR training phase, subjects could focus on MI avoiding any distraction. This could help the subject to create a robust model of the BCI classifier that would be used later to control the exoskeleton. This paper analyzes if gait MI can be improved when VR feedback is provided to subjects instead of visual feedback by a screen. Additionally, both types of visual feedback are analyzed while subjects are seated or standing up. From the analysis, visual feedback by VR was related to higher performances in the majority of cases, not being relevant the differences between standing and being seated. The paper also presents a case of study for the closed-loop control of the BCI in a virtual reality environment. Subjects had to perform gait MI or to be in a relaxation state and based on the output of the BCI, the immersive first person view remained static or started to move. Experiments showed an accuracy of issued commands of 91.0 ± 6.7, being a very satisfactory result.
The aim of this paper is to describe new methods for detecting the appearance of unexpected obstacles during normal gait from EEG signals, improving the accuracy and reducing the false positive rate obtained in previous studies. This way, an exoskeleton for rehabilitation or assistance of people with motor limitations commanded by a Brain-Machine Interface (BMI) could be stopped in case that an obstacle suddenly appears during walking. The EEG data of nine healthy subjects were collected during their normal gait while an obstacle appearance was simulated by the projection of a laser line in a random pattern. Different approaches were considered for selecting the parameters of the BMI: subsets of electrodes, time windows and classifier probabilities, which were based on a linear discriminant analysis (LDA). The pseudo-online results of the BMI for detecting the appearance of obstacles, with an average percentage of 63.9% of accuracy and 2.6 false positives per minute, showed a significant improvement over previous studies.
Brain–Computer Interfaces (BCI) are systems that allow external devices to be controlled by means of brain activity. There are different such technologies, and electroencephalography (EEG) is an example. One of the most common EEG control methods is based on detecting changes in sensorimotor rhythms (SMRs) during motor imagery (MI). The aim of this study was to assess the laterality of cortical function when performing MI of the lower limb. Brain signals from five subjects were analyzed in two conditions, during exoskeleton-assisted gait and while static. Three different EEG electrode configurations were evaluated: covering both hemispheres, covering the non-dominant hemisphere and covering the dominant hemisphere. In addition, the evolution of performance and laterality with practice was assessed. Although sightly superior results were achieved with information from all electrodes, differences between electrode configurations were not statistically significant. Regarding the evolution during the experimental sessions, the performance of the BCI generally evolved positively the higher the experience was.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.