Emerging data indicate that rice consumption may lead to potentially harmful arsenic exposure. However, few human data are available, and virtually none exist for vulnerable periods such as pregnancy. Here we document a positive association between rice consumption and urinary arsenic excretion, a biomarker of recent arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit, we collected a urine sample and 3-d dietary record for water, fish/ seafood, and rice. We also tested women's home tap water for arsenic, which we combined with tap water consumption to estimate arsenic exposure through water. Women who reported rice intake (n = 73) consumed a median of 28.3 g/d, which is ∼0.5 cup of cooked rice each day. In general linear models adjusted for age and urinary dilution, both rice consumption (g, dry mass/d) and arsenic exposure through water (μg/d) were significantly associated with natural log-transformed total urinary arsenic (β rice = 0.009, β water = 0.028, both P < 0.0001), as well as inorganic arsenic, monomethylarsonic acid, and dimethylarsinic acid (each P < 0.005). Based on total arsenic, consumption of 0.56 cup/d of cooked rice was comparable to drinking 1 L/d of 10 μg As/L water, the current US maximum contaminant limit. US rice consumption varies, averaging ∼0.5 cup/d, with Asian Americans consuming an average of >2 cups/d. Rice arsenic content and speciation also vary, with some strains predominated by dimethylarsinic acid, particularly those grown in the United States. Our findings along with others indicate that rice consumption should be considered when designing arsenic reduction strategies in the United States.
IMPORTANCE Rice-a typical first food and major ingredient in various infant foods-contains inorganic arsenic (As), but the extent of As exposure from these foods has not been well characterized in early childhood.OBJECTIVE To determine the types and frequency of rice and rice-containing products consumed by infants in the first year of life and the association with As biomarker concentrations.DESIGN, SETTING, AND PARTICIPANTS Included were infants from singleton births of pregnant women enrolled in the New Hampshire Birth Cohort Study from 2011 to 2014 whose parents were interviewed during their first year of life. Enrolled women from selected clinics were aged 18 to 45 years, living in the same residence since their last menstrual period, in households served by a private water system, and had no plans to move during pregnancy. Data on infants' intake of rice and rice products were collected from interviews with their parents at 4, 8, and 12 months' follow-up and from a 3-day food diary at 12 months from March 2013 to August 2014.EXPOSURES Infants' intake of rice and rice products. MAIN OUTCOMES AND MEASURESTotal urinary As and the sum of As species measured using inductively coupled mass spectrometry and high-performance liquid chromatography with inductively coupled mass spectrometry. Commonly reported infant rice snacks were tested for As. RESULTSWe obtained dietary data on 759 of 951 infants (79.8% participation rate). Of these, 391 infants (51.7%) were male, and the mean (SD) gestational age was 39.4 (1.7) weeks. An estimated 80% were introduced to rice cereal during their first year. At 12 months, 32.6% of infants (42 of 129) were fed rice snacks. Among infants aged 12 months who did not eat fish or seafood, the geometric mean total urinary As concentrations were higher among those who ate infant rice cereal (9.53 μg/L) or rice snacks (4.97 μg/L) compared with those who did not eat rice or rice products (2.85 μg/L; all P < .01). Infant rice snacks contained between 36 and 568 ng/g of As and 5 to 201 ng/g of inorganic As. CONCLUSIONS AND RELEVANCEOur findings indicate that intake of rice cereal and other rice-containing foods, such as rice snacks, contribute to infants' As exposure and suggest that efforts should be made to reduce As exposure during this critical phase of development.
BackgroundLimited data exist on the contribution of dietary sources of arsenic to an individual’s total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest.MethodsAssociations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L.ResultsAs expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L).ConclusionsThis study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential health risk.
Seaweeds contain arsenic primarily in the form of arsenosugars, which can be metabolized to a wide range of arsenic compounds. To characterize human exposure to arsenic from seaweed consumption, we determined concentrations of arsenic species in locally available seaweeds, and assessed urinary arsenic compounds in an experimental feeding study. A total of 11 volunteers consumed 10 g per day of three types of seaweeds (nori, kombu, and wakame) for three days each, while abstaining from rice and seafood following a three-day washout period. Urinary arsenosugars and their metabolites (including dimethyl arsenate (DMA), thio-dimethylarsinoylethanol (thio-DMAE), thio-dimethylarsinoylacetate (thio-DMAA), and thio-DMA) were measured in spot urine samples prior to seaweed consumption, and in 24-hour urine samples while consuming seaweed. Commercial products made from whole seaweed had substantial concentrations of arsenic (12–84 µg/g), dominated by arsenosugars. Intact arsenosugars along with DMA, thio-DMAA, thio-DMAE all increased in urine after ingesting each type of seaweed, and varied between seaweed types and between individuals. Only trace levels of the known toxic metabolite, thio-DMA, were observed, across individuals. Thio-DMAE and thio-DMAA are unique products of arsenosugar breakdown, thus assessment of these compounds may help to identify dietary intake of arsenic from seaweed from other exposure pathways.
WHAT'S KNOWN ON THIS SUBJECT: Indoor tanning has gained widespread popularity among adolescents and young adults. Incidence rates of early-onset basal cell carcinoma also appear to be rising. Scant evidence exists on the impacts of early exposure and whether it leads to early occurrence of this malignancy. WHAT THIS STUDY ADDS:In a US population-based study, indoor tanning was associated with an elevated risk of basal cell carcinomas occurring at or before the age of 50 years, with an increasing trend in risk with younger age at exposure among adolescents and young adults. abstract OBJECTIVE: Indoor tanning with UV radiation-emitting lamps is common among adolescents and young adults. Rising incidence rates of basal cell carcinoma (BCC) have been reported for the United States and elsewhere, particularly among those diagnosed at younger ages. Recent epidemiologic studies have raised concerns that indoor tanning may be contributing to early occurrence of BCC, and younger people may be especially vulnerable to cancer risk associated with this exposure. Therefore, we sought to address these issues in a population-based case-control study from New Hampshire. METHODS:Data on indoor tanning were obtained on 657 cases of BCC and 452 controls #50 years of age.RESULTS: Early-onset BCC was related to indoor tanning, with an adjusted odds ratio (OR) of 1.6 (95% confidence interval, 1.3-2.1). The strongest association was observed for first exposure as an adolescent or young adult, with a 10% increase in the OR with each age younger at first exposure (OR per year of age #23 = 1.1; 95% confidence interval, 1.0-1.2). Associations were present for each type of device examined (ie, sunlamps, tanning beds, and tanning booths). CONCLUSIONS:Our findings suggest early exposure to indoor tanning increases the risk of early development of BCC. They also underscore the importance of counseling adolescents and young adults about the risks of indoor tanning and for discouraging parents from consenting minors to this practice. Pediatrics 2014;134:e4-e12 AUTHORS:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.