Abstract-The formation of advanced glycation end products (AGEs) on extracellular matrix components leads to accelerated increases in collagen cross linking that contributes to myocardial stiffness in diabetes. This study determined the effect of the crosslink breaker, ALT-711 on diabetes-induced cardiac disease.
Advanced glycation end product (AGE) formation may contribute to the progression of atherosclerosis, particularly in diabetes. The present study explored atherosclerosis in streptozotocin-induced diabetic apolipoprotein E-deficient (apoE؊/؊) mice that were randomized (n ؍ 20) to receive for 20 weeks no treatment, the AGE cross-link breaker ALT-711, or the inhibitor of AGE formation aminoguanidine (AG). A sixfold increase in plaque area with diabetes was attenuated by 30% with ALT-711 and by 40% in AG-treated mice. Regional distribution of plaque demonstrated no reduction in plaque area or complexity within the aortic arch with treatment, in contrast to the thoracic and abdominal aortas, where significant attenuation was seen. Diabetes-associated accumulation of AGEs in aortas and plasma and decreases in skin collagen solubility were ameliorated by both treatments, in addition to reductions in the vascular receptor for AGE. Collagenassociated reductions in the AGEs carboxymethyllysine and carboxyethyllysine were identified with both treatments. Diabetes was also accompanied by aortic accumulation of total collagen, specifically collagens I, III, and IV, as well as increases in the profibrotic cytokines transforming growth factor- and connective tissue growth factor and in cellular ␣-smooth muscle actin. Attenuation of these changes was seen in both treated diabetic groups. ALT-711 and AG demonstrated the ability to reduce vascular AGE accumulation in addition to attenuating atherosclerosis in these diabetic mice.
Renal accumulation of advanced glycation end products (AGEs) has been linked to the progression of diabetic nephropathy. Cleavage of pre-formed AGEs within the kidney by a cross-link breaker, such as ALT-711, may confer renoprotection in diabetes. STZ diabetic rats were randomized into a) no treatment (D); b) treatment with the AGE cross-link breaker, ALT-711, weeks 16-32 (DALT early); and c) ALT-711, weeks 24-32 (DALT late). Treatment with ALT-711 resulted in a significant reduction in diabetes-induced serum and renal AGE peptide fluorescence, associated with decreases in renal carboxymethyllysine and RAGE immunostaining. Cross-linking of tail tendon collagen seen in diabetic groups was attenuated only by 16 weeks of ALT-711 treatment. ALT-711, independent of treatment duration, retarded albumin excretion rate (AER), reduced blood pressure, and renal hypertrophy. It also reduced diabetes-induced increases in gene expression of transforming growth factor beta1 (TGF-beta1), connective tissue growth factor (CTGF), and collagen IV. However, glomerulosclerotic index, tubulointerstitial area, total renal collagen, nitrotyrosine, protein expression of collagen IV, and TGF-beta1 only showed improvement with early ALT treatment alone. This study demonstrates the utility of a cross-link breaker as a treatment for diabetic nephropathy and describes effects not only on renal AGEs but on putative mediators of renal injury, such as prosclerotic cytokines and oxidative stress.
The effect of ACE inhibition on the formation of advanced glycation end products (AGEs) and oxidative stress was explored. Streptozocin-induced diabetic animals were randomized to no treatment, the ACE inhibitor ramipril (3 mg/l), or the AGE formation inhibitor aminoguanidine (1 g/l) and followed for 12 weeks. Control groups were followed concurrently. Renal AGE accumulation, as determined by immunohistochemistry and both serum and renal fluorescence, were increased in diabetic animals. This was attenuated by both ramipril and aminoguanidine to a similar degree. Nitrotyrosine, a marker of protein oxidation, also followed a similar pattern. The receptor for AGEs, gene expression of the membrane-bound NADPH oxidase subunit gp91phox, and nuclear transcription factor-kappaB were all increased by diabetes but remained unaffected by either treatment regimen. Two other AGE receptors, AGE R2 and AGE R3, remained unchanged for the duration of the study. The present study has identified a relationship between the renin-angiotensin system and the accumulation of AGEs in experimental diabetic nephropathy that may be linked through oxidative stress
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.