Cha am, a popular beach destination in Thailand, uses an aerated lagoon system with four ponds in series to treat its municipal wastewater. This study investigated the spatial pattern of heavy metal concentrations in the sediment deposited at the bottom of the four ponds and along the river receiving the treated wastewater discharge. Using a stratified random sampling scheme, between 11 and 14 surface grab samples were collected from each of the four ponds on two different dates in September and October 2016 (94 samples in total). An additional 17 samples were collected in December 2016 along the 1.8 km river section connecting the ponds to the ocean. A Bruker S1 Titan 600 X-ray fluorescence (XRF) analyser was used to determine metal concentrations in the air dried sediment samples. Ordinary kriging in ArcGIS10.1 indicated that while metal concentrations were greater in the middle areas of each pond, from pond to pond the metal concentrations exhibited different spatial trends. The ponds provide treatment for most of the metals analysed, with Student t-tests showing that mean concentrations of arsenic, chlorine and zinc decreased significantly from the first pond to the third pond but increased significantly in the fourth pond. Chromium concentration changed insignificantly between ponds; lead concentration decreased significantly from the first to the second pond, but there were insignificant changes in mean lead concentration thereafter. Concentrations of cadmium, cobalt, mercury and selenium were below the XRF limit of detection, but the mean levels of arsenic, chromium, copper, lead and manganese in each of the four ponds frequently exceeded Ontario Ministry of the Environment and Climate Change lowest effect level (LEL) guidelines for sediment. Metal levels in the upper reach of the river, closest to the pond discharge, were similar to the pond levels and generally decreased downstream. With the exception of zinc, metal levels detected in the river sediment frequently exceeded the LEL guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.