We show that the NP-hard quadratic unconstrained binary optimization (QUBO) problem on a graph G can be solved using an adiabatic quantum computer that implements an Ising spin-1/2 Hamiltonian, by reduction through minor-embedding of G in the quantum hardware graph U . There are two components to this reduction: embedding and parameter setting. The embedding problem is to find a minor-embedding G emb of a graph G in U , which is a subgraph of U such that G can be obtained from G emb by contracting edges. The parameter setting problem is to determine the corresponding parameters, qubit biases and coupler strengths, of the embedded Ising Hamiltonian. In this paper, we focus on the parameter setting problem. As an example, we demonstrate the embedded Ising Hamiltonian for solving the maximum independent set (MIS) problem via adiabatic quantum computation (AQC) using an Ising spin-1/2 system. We close by discussing several related algorithmic problems that need to be investigated in order to facilitate the design of adiabatic algorithms and AQC architectures.
In Choi (Quantum Inf Process, 7:193-209, 2008), we introduced the notion of minor-embedding in adiabatic quantum optimization. A minor-embedding of a graph G in a quantum hardware graph U is a subgraph of U such that G can be obtained from it by contracting edges. In this paper, we describe the intertwined adiabatic quantum architecture design problem, which is to construct a hardware graph U that satisfies all known physical constraints and, at the same time, permits an efficient minor-embedding algorithm. We illustrate an optimal complete-graph-minor hardware graph. Given a family F of graphs, a (host) graph U is called F-minor-universal if for each graph G in F, U contains a minor-embedding of G. The problem for designing a F-minor-universal hardware graph U sparse in which F consists of a family of sparse graphs (e.g., bounded degree graphs) is open.
We investigate the connection between local minima in the problem Hamiltonian and first-order quantum phase transitions during adiabatic quantum computation. We demonstrate how some properties of the local minima can lead to an extremely small gap that is exponentially sensitive to the Hamiltonian parameters. Using perturbation expansion, we derive an analytical formula that cannot only predict the behavior of the gap, but also provide insight on how to controllably vary the gap size by changing the parameters. We show agreement with numerical calculations for a weighted maximum independent set problem instance.
We report an experimental measurement of Landau-Zener transitions on an individual flux qubit within a multiqubit superconducting chip. The method used isolates a single qubit, tunes its tunneling amplitude ⌬ into the limit where ⌬ is much less than both the temperature T and the decoherence-induced energy level broadening, and forces it to undergo a Landau-Zener transition. We find that the behavior of the qubit agrees to a high degree of accuracy with theoretical predictions for Landau-Zener transition probabilities for a double-well quantum system coupled to a nonMarkovian 1 / f magnetic flux noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.