In the current literature, many non-covalent interaction (NCI) donors have been proposed that can potentially catalyze Diels-Alder (DA) reactions. In this study, a detailed analysis of the governing factors in Lewis acid and non-covalent catalysis of three types of DA reactions was carried out, for which we selected a set of hydrogen-, halogen-, chalcogen-, and pnictogen-bond donors. We found that the more stable the NCI donor–dienophile complex, the larger the reduction in DA activation energy. We also showed that for active catalysts, a significant part of the stabilization was caused by orbital interactions, though electrostatic interactions dominated. Traditionally, DA catalysis was attributed to improved orbital interactions between the diene and dienophile. Recently, Vermeeren and co-workers applied the activation strain model (ASM) of reactivity, combined with the Ziegler-Rauk-type energy decomposition analysis (EDA), to catalyzed DA reactions in which energy contributions for the uncatalyzed and catalyzed reaction were compared at a consistent geometry. They concluded that reduced Pauli repulsion energy, and not enhanced orbital interaction energy, was responsible for the catalysis. However, when the degree of asynchronicity of the reaction is altered to a large extent, as is the case for our studied hetero-DA reactions, the ASM should be employed with caution. We therefore proposed an alternative and complementary approach, in which EDA values for the catalyzed transition-state geometry, with the catalyst present or deleted, can be compared one to one, directly measuring the effect of the catalyst on the physical factors governing the DA catalysis. We discovered that enhanced orbital interactions are often the main driver for catalysis and that Pauli repulsion plays a varying role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.