An image quality matrix provides a significant principle for objectively observing an image based on an alteration between the original and distorted images. During the past two decades, a novel universal image quality assessment has been developed with the ability of adaptation with human visual perception for measuring the difference of a degraded image from the reference image, namely a structural similarity index. Structural similarity has since been widely used in various sectors, including medical image evaluation. Although numerous studies have reported the use of structural similarity as an evaluation strategy for computer-based medical images, reviews on the prospects of using structural similarity for medical imaging applications have been rare. This paper presents previous studies implementing structural similarity in analyzing medical images from various imaging modalities. In addition, this review describes structural similarity from the perspective of a family’s historical background, as well as progress made from the original to the recent structural similarity, and its strengths and drawbacks. Additionally, potential research directions in applying such similarities related to medical image analyses are described. This review will be beneficial in guiding researchers toward the discovery of potential medical image examination methods that can be improved through structural similarity index.
Diffuse optical tomography, an imaging modality that utilizes near-infrared light, is a new way to assess soft tissue. It provides a non-invasive screening of soft tissue, such as the breast in females and prostate in males, to inspect the existence of cancer. This new imaging method is considered cost-effective and preferred because the implementation is simply through the application of a laser or light-emitting diode as a light source. Near-infrared technology does not only offer cancer screening modality, but also acts as a cancer treatment method, called near-infrared photoimmunotherapy. Despite plentiful studies in the area of near-infrared technology for cancer imaging and cancer cell suppression, there is no consolidated review that provides an overview of near-infrared application in cancer cell imaging and therapy. The objective of this study is to review near-infrared-based medical imaging and novel approaches to eradicate cancer cells. Additionally, we have discussed prospective instrumentation to establish cancer therapeutics apparatuses based on near-infrared technology. This review is expected to guide researchers implementing near-infrared for a medical imaging modality and cancer suppression in vitro, in vivo, and in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.