Abstract. The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO 2 ) with the accuracy, resolution, and coverage needed to quantify CO 2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO 2 dry air mole fraction, X CO 2 , that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of X CO 2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes X CO 2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north-south X CO 2 gradient is small. Enhanced X CO 2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north-south X CO 2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in X CO 2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO 2 . As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart X CO 2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.
Abstract. The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014, and joined the 705 km Afternoon Constellation on 3 August 2014. On monthly time scales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO2 dry air mole fraction, XCO2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of XCO2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes XCO2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north-south XCO2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in XCO2 across the northern hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart XCO2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high resolution, global data set.
Background. The COVID-19 pandemic has resulted in changes in almost every aspect of life. The fatal consequences of the pandemic have been clearly reported, with direct and indirect effects; however, there is some evidence of a positive secondary impact, such as fewer motor accidents and reduced air pollution. Methods. We present a model to describe the opposing effects of the COVID-19 pandemic on mortality, taking into account external pressures and internal resources and their relationship with resilience and health behaviors, which affect mortality risk. Individuals with lower resources and from more deprived communities are likely to be more negatively affected by the external changes occurring. Results. The COVID-19 pandemic has had both a positive and negative impact on mortality. Conclusions. Decision makers should consider ways to incorporate the positive changes which occurred as part of the exit strategy. Special emphasis should be given to populations most affected by external changes, in order to build resilience and reduce disparities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.