Non-invasively collected faecal samples are an alternative source of DNA to tissue samples, that may be used in genetic studies of wildlife when direct sampling of animals is difficult. Although several faecal DNA extraction methods exist, their efficacy varies between species. Previous attempts to amplify mitochondrial DNA (mtDNA) markers from faeces of wild dugongs (Dugong dugon) have met with limited success and nuclear markers (microsatellites) have been unsuccessful. This study aimed to establish a tool for sampling both mtDNA and nuclear DNA (nDNA) from dugong faeces by modifying approaches used in studies of other large herbivores. First, a streamlined, cost-effective DNA extraction method that enabled the amplification of both mitochondrial and nuclear markers from large quantities of dugong faeces was developed. Faecal DNA extracted using a new ‘High Volume- Cetyltrimethyl Ammonium Bromide- Phenol-Chloroform-Isoamyl Alcohol’ (HV-CTAB-PCI) method was found to achieve comparable amplification results to extraction of DNA from dugong skin. As most prevailing practices advocate sampling from the outer surface of a stool to maximise capture of sloughed intestinal cells, this study compared amplification success of mtDNA between the outer and inner layers of faeces, but no difference in amplification was found. Assessment of the impacts of faecal age or degradation on extraction, however, demonstrated that fresher faeces with shorter duration of environmental (seawater) exposure amplified both markers better than eroded scats. Using the HV-CTAB-PCI method, nuclear markers were successfully amplified for the first time from dugong faeces. The successful amplification of SNP markers represents a proof-of-concept showing that DNA from dugong faeces can potentially be utilised in population genetic studies. This novel DNA extraction protocol offers a new tool that will facilitate genetic studies of dugongs and other large and cryptic marine herbivores in remote locations.
Non-invasively collected faecal samples are an alternative source of DNA to tissue samples, that may be used in genetic studies of wildlife when direct sampling of animals is difficult. Although several faecal DNA extraction methods exist, their efficacy varies between species. Previous attempts to amplify mitochondrial DNA (mtDNA) markers from faeces of wild dugongs (Dugong dugon) have met with limited success and nuclear markers (microsatellites) have been unsuccessful. This study aimed to establish a tool for sampling both mtDNA and nuclear DNA (nDNA) from dugong faeces by modifying approaches used in studies of other large herbivores. First, a streamlined, cost-effective DNA extraction method that enabled the amplification of both mitochondrial and nuclear markers from large quantities of dugong faeces was developed. Faecal DNA extracted using a new ‘High Volume- Cetyltrimethyl Ammonium Bromide- Phenol-Chloroform-Isoamyl Alcohol’ (HV-CTAB-PCI) method was found to achieve comparable amplification results to extraction of DNA from dugong skin. As most prevailing practices advocate sampling from the outer surface of a stool to maximise capture of sloughed intestinal cells, this study compared amplification success of mtDNA between the outer and inner layers of faeces, but no difference in amplification was found. Assessment of the impacts of faecal age or degradation on extraction, however, demonstrated that fresher faeces with shorter duration of environmental (seawater) exposure amplified both markers better than eroded scats. Using the HV-CTAB-PCI method, nuclear markers were successfully amplified for the first time from dugong faeces. The successful amplification of single nucleotide polymorphism (SNP) markers represents a proof-of-concept showing that DNA from dugong faeces can potentially be utilised in population genetic studies. This novel DNA extraction protocol offers a new tool that will facilitate genetic studies of dugongs and other large and cryptic marine herbivores in remote locations.
Non-invasively collected faecal samples are an alternative source of DNA to tissue samples, that may be used in genetic studies of wildlife when direct sampling of animals is difficult. Although several faecal DNA extraction methods exist, their efficacy varies between species. Previous attempts to amplify mitochondrial DNA (mtDNA) markers from faeces of wild dugongs (Dugong dugon) have met with limited success and nuclear markers (microsatellites) have been unsuccessful. This study aimed to establish a tool for sampling both mtDNA and nuclear DNA (nDNA) from dugong faeces by modifying approaches used in studies of other large herbivores. First, a streamlined, cost-effective DNA extraction method that enabled the amplification of both mitochondrial and nuclear markers from large quantities of dugong faeces was developed. Faecal DNA extracted using a new ‘High Volume- Cetyltrimethyl Ammonium Bromide- Phenol-Chloroform-Isoamyl Alcohol’ (HV-CTAB-PCI) method was found to achieve comparable amplification results to extraction of DNA from dugong skin. As most prevailing practices advocate sampling from the outer surface of a stool to maximise capture of sloughed intestinal cells, this study compared amplification success of mtDNA between the outer and inner layers of faeces, but no difference in amplification was found. Assessment of the impacts of faecal age or degradation on extraction, however, demonstrated that fresher faeces with shorter duration of environmental (seawater) exposure amplified both markers better than eroded scats. Using the HV-CTAB-PCI method, nuclear markers were successfully amplified for the first time from dugong faeces. The successful amplification of SNP markers represents a proof-of-concept showing that DNA from dugong faeces can potentially be utilised in population genetic studies. This novel DNA extraction protocol offers a new tool that will facilitate genetic studies of dugongs and other large and cryptic marine herbivores in remote locations.
Non-invasively collected faecal samples are an alternative source of DNA to tissues, that may be used in genetic studies of wildlife when direct sampling of animals is difficult. Although several faecal DNA extraction methods exist, their efficacy varies between species. Previous attempts to amplify mitochondrial DNA (mtDNA) markers from faeces of wild dugongs have met with limited success and nuclear markers (microsatellites) have been unsuccessful. This study aimed to develop a new tool for sampling both mtDNA and nuclear DNA (nDNA) from dugong faeces by modifying approaches used in studies of other large herbivores. First, amplification success of genetic markers from dugong faeces was compared between an established QIAamp and a newly developed DNA extraction method. Faecal DNA extracted using a new 'High Volume-CTAB-PCI' (HV-CTAB-PCI) method was found to achieve comparable amplification results to extraction of dugong skin DNA. As most prevailing practices advocate sampling from the outer surface of a stool to maximise capture of sloughed intestinal cells, this study compared amplification success of mtDNA between the outer and inner layers of faeces, but no difference in amplification was found. Assessment of the impacts of faecal age or degradation on extraction, however, demonstrated that fresher faeces with shorter duration of environmental (seawater) exposure amplified mtDNA and nDNA better than eroded scats. Using the HV-CTAB-PCI method, nDNA was successfully amplified for the first time from dugong faeces. This novel DNA extraction protocol offers a new tool that will facilitate genetic studies of dugongs and other large and cryptic marine herbivores in remote locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.