Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.
e Influenza A virus (IAV) and Streptococcus pneumoniae are major causes of respiratory tract infections, particularly during coinfection. The synergism between these two pathogens is characterized by a complex network of dysregulated immune responses, some of which last until recovery following IAV infection. Despite the high serotype diversity of S. pneumoniae and the serotype replacement observed since the introduction of conjugate vaccines, little is known about pneumococcal strain dependency in the enhanced susceptibility to severe secondary S. pneumoniae infection following IAV infection. Thus, we studied how preinfection with IAV alters host susceptibility to different S. pneumoniae strains with various degrees of invasiveness using a highly invasive serotype 4 strain, an invasive serotype 7F strain, and a carrier serotype 19F strain. A murine model of pneumococcal coinfection during the acute phase of IAV infection showed a significantly increased degree of pneumonia and mortality for all tested pneumococcal strains at otherwise sublethal doses. The incidence and kinetics of systemic dissemination, however, remained bacterial strain dependent. Furthermore, we observed strain-specific alterations in the pulmonary levels of alveolar macrophages, neutrophils, and inflammatory mediators ultimately affecting immunopathology. During the recovery phase following IAV infection, bacterial growth in the lungs and systemic dissemination were enhanced in a strain-dependent manner. Altogether, this study shows that acute IAV infection predisposes the host to lethal S. pneumoniae infection irrespective of the pneumococcal serotype, while the long-lasting synergism between IAV and S. pneumoniae is bacterial strain dependent. These results hold implications for developing tailored therapeutic treatment regimens for dual infections during future IAV outbreaks. Infection with secondary bacterial pathogens is attributed to be the major cause of excessive mortality during influenza A virus (IAV) outbreaks. This lethal synergism has been recognized as early as during the 1918-1919 IAV pandemic with an estimated global death toll of 50 to 100 million (1, 2). Retrospective studies disclosed that 71% of the fatal cases during this pandemic were positive for Streptococcus pneumoniae (also called pneumococcus), providing the first epidemiological evidence for viral-bacterial coinfections (2). A clear predisposition to bacterial disease was also evident in all of the succeeding influenza pandemics, including the more recent 2009 H1N1 outbreak, which had a 10 to 55% higher incidence of hospitalizations and mortality due to bacterial pneumonia (3). Pneumococcal colonization is transient and asymptomatic in immunocompetent individuals and most commonly occurs in early childhood (4). At the same time, however, pneumococci are able to cause a variety of diseases ranging from mild sinusitis and otitis media to more-severe infections like sepsis and meningitis. Even though the introduction of the polyvalent pneumococcal conjugate vaccines...
Highlights d Competence development leads to DNA uptake and spread of antibiotic resistance d Identification of competence inhibitors in Streptococcus pneumoniae (COM-blockers) d COM-blockers act by disrupting the proton motive force, thereby reducing CSP export d COM-blockers inhibit horizontal gene transfer in a murine model of infection
Secondary bacterial infections enhance the disease burden of influenza infections substantially. Streptococcus pneumoniae (the pneumococcus) plays a major role in the synergism between bacterial and viral pathogens, which is based on complex interactions between the pathogen and the host immune response. Here, we discuss mechanisms that drive the pathogenesis of a secondary pneumococcal infection after an influenza infection with a focus on how pneumococci senses and adapts to the influenza-modified environment. We briefly summarize what is known regarding secondary bacterial infection in relation to COVID-19 and highlight the need to improve our current strategies to prevent and treat viral bacterial coinfections.
Influenza A virus (IAV)-related mortality is often due to secondary bacterial infections, primarily by pneumococci. Here, we study how IAV-modulated changes in the lungs affect bacterial replication in the lower respiratory tract (LRT). Bronchoalveolar lavages (BALs) from coinfected mice showed rapid bacterial proliferation 4 to 6 h after pneumococcal challenge. Metabolomic and quantitative proteomic analyses demonstrated capillary leakage with efflux of nutrients and antioxidants into the alveolar space. Pneumococcal adaptation to IAV-induced inflammation and redox imbalance increased the expression of the pneumococcal chaperone/protease HtrA. Presence of HtrA resulted in bacterial growth advantage in the IAV-infected LRT and protection from complement-mediated opsonophagocytosis due to capsular production. Absence of HtrA led to growth arrest in vitro that was partially restored by antioxidants. Pneumococcal ability to grow in the IAV-infected LRT depends on the nutrient-rich milieu with increased levels of antioxidants such as ascorbic acid and its ability to adapt to and cope with oxidative damage and immune clearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.