Summary Starvation blocks the actions of growth hormone (GH) and inhibits growth through mechanisms that are not well understood. In this report, we demonstrate that fibroblast growth factor 21 (FGF21), a hormone induced by fasting, causes GH resistance. In liver, FGF21 reduces concentrations of the active form of signal transducer and activator of transcription 5 (STAT5), a major mediator of GH actions, and causes corresponding decreases in the expression of its target genes including insulin-like growth factor 1 (IGF-1). FGF21 also induces hepatic expression of IGF-1 binding protein 1 and suppressor of cytokine signaling 2, which blunt GH signaling. Chronic exposure to FGF21 markedly inhibits growth in mice. These data suggest a central role for FGF21 in inhibiting growth as part of its broader role in inducing the adaptive response to starvation.
Preventing reproduction during nutritional deprivation is an adaptive process that is conserved and essential for the survival of species. In mammals, the mechanisms that inhibit pregnancy during starvation are complex and incompletely understood1–7. Here we show that exposure of female mice to FGF21, a fasting-induced hepatokine, mimics infertility secondary to starvation. Mechanistically, FGF21 acts on the suprachiasmatic nucleus (SCN) in the hypothalamus to suppress the vasopressin-kisspeptin signaling cascade, thereby inhibiting the proestrus surge in luteinizing hormone. Mice lacking the FGF21 co-receptor, β-Klotho, in the SCN are refractory to the inhibitory effect of FGF21 on female fertility. Thus, FGF21 defines an important liver-neuroendocrine axis that modulates female reproduction in response to nutritional challenge.
Although widely prescribed for their potent antiinflammatory actions, glucocorticoid drugs (e.g., dexamethasone) cause undesirable side effects that are features of the metabolic syndrome, including hyperglycemia, fatty liver, insulin resistance, and type II diabetes. Liver x receptors (LXRs) are nuclear receptors that respond to cholesterol metabolites and regulate the expression of a subset of glucocorticoid target genes. Here, we show LXRβ is required to mediate many of the negative side effects of glucocorticoids. Mice lacking LXRβ (but not LXRα) were resistant to dexamethasone-induced hyperglycemia, hyperinsulinemia, and hepatic steatosis, but remained sensitive to dexamethasone-dependent repression of the immune system. In vivo, LXRα/β knockout mice demonstrated reduced dexamethasone-induced expression of the key hepatic gluconeogenic gene, phosphoenolpyruvate carboxykinase (PEPCK). In perfused liver and primary mouse hepatocytes, LXRβ was required for glucocorticoid-induced recruitment of the glucocorticoid receptor to the PEPCK promoter. These findings suggest a new avenue for the design of safer glucocorticoid drugs through a mechanism of selective glucocorticoid receptor transactivation.
In pituitary and other target tissues, estrogen acts through ERs, which are ligand-activated nuclear transcription factors. ERs can also be activated by intracellular signaling pathways in a ligand-independent manner in some cells. Because the pituitary is the target of several cAMP-activating factors, we examined the ability of cAMP to activate ERs in the alphaT3 gonadotrope cell line. Forskolin, 8-bromo-cAMP, and pituitary adenylate cyclase-activating polypeptide all enhanced ER-dependent promoter activity, which was inhibited by antiestrogen or a pituitary-specific inhibitory ER variant. Activation was PKA dependent and was blocked by the PKA inhibitor H89 or cotransfection of the inhibitor PKI. Although cAMP activated MAPK in alphaT3 cells, inhibition of MAPK with the MEK inhibitor PD98059 did not prevent forskolin-induced ER activation. Similarly, epidermal growth factor did not stimulate ER activity, although it increased MAPK activation. Forskolin-induced activation of ER was enhanced by cotransfection of steroid receptor coactivator-1 and was inhibited by the repressor of ER action, suggesting that cAMP does not alter the normal interactions between ER and cofactors. In contrast to results with estrogen, cAMP treatment did not decrease ER protein levels. These results demonstrate that in the pituitary, cAMP activates ER in a ligand-independent manner exclusively through PKA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.