Trends (1961Trends ( -2003 in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.
ABSTRACT:Rainfall records for 23 countries and territories in the western Pacific have been collated for the purpose of examining trends in total and extreme rainfall since 1951. For some countries this is the first time that their data have been included in this type of analysis and for others the number of stations examined is more than twice that available in the current literature. Station trends in annual total and extreme rainfall for 1961-2011 are spatially heterogeneous and largely not statistically significant. This differs with the results of earlier studies that show spatially coherent trends that tended to reverse in the vicinity of the South Pacific Convergence Zone (SPCZ). We infer that the difference is due to the Interdecadal Pacific Oscillation switching to a negative phase from about 1999, largely reversing earlier rainfall changes. Trend analyses for 1981-2011 show wetter conditions in the West Pacific Monsoon (WPM) region and southwest of the mean SPCZ position. In the tropical North Pacific it has become wetter west of 160 • E with the Intertropical Convergence Zone/WPM expanding northwards west of 140 • E. Northeast of the SPCZ and in the central tropical Pacific east of about 160 • E it has become drier. Our findings for the South Pacific subtropics are consistent with broader trends seen in parts of southern and eastern Australia towards reduced rainfall. The relationship between total and extreme rainfall and Pacific basin sea surface temperatures (SSTs) has been investigated with a focus on the influence of the El Niño-Southern Oscillation (ENSO). We substantiate a strong relationship between ENSO and total rainfall and establish similar relationships for the threshold extreme indices. The percentile-based and absolute extreme indices are influenced by ENSO to a lesser extent and in some cases the influence is marginal. Undoubtedly, larger-scale SST variability is not the only influence on these indices.
C limate data, and their associated metadata, provide the fundamental building blocks for climate research and the development of climate products, applications, and services. In the past decade or so, the requirements of climate researchers to analyze and detect climate change and develop seasonal-tointerannual prediction systems have increased the importance of climate data. Climate data are also required for the preparation of climate models, which are widely used for verification of seasonal-to-inter
Ciguatera poisoning (CP) results from the consumption of seafood contaminated with ciguatoxins (CTXs). This disease is highly prevalent in French Polynesia with several well-identified hotspots. Rapa Island, the southernmost inhabited island in the country, was reportedly free of CP until 2007. This study describes the integrated approach used to investigate the etiology of a fatal mass-poisoning outbreak that occurred in Rapa in 2009. Symptoms reported in patients were evocative of ciguatera. Several Gambierdiscus field samples collected from benthic assemblages tested positive by the receptor binding assay (RBA). Additionally, the toxicity screening of ≈250 fish by RBA indicated ≈78% of fish could contain CTXs. The presence of CTXs in fish was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential link between climate change and this range expansion of ciguatera to a subtropical locale of French Polynesia was also examined based on the analysis of temperature time-series data. Results are indicative of a global warming trend in Rapa area. A five-fold reduction in incidence rates was observed between 2009 and 2012, which was due in part to self-regulating behavior among individuals (avoidance of particular fish species and areas). Such observations underscore the prominent role played by community outreach in ciguatera risk management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.