[1] A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with nearcomplete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.
Trends (1961Trends ( -2003 in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.
Trends in daily temperature and rainfall indices are described for New Zealand. Two periods were examined: , to describe significant trends in temperature and rainfall parameters; and 1930 -1998, to ascertain the effects of two main circulation changes that have occurred in the New Zealand region around 1950 and 1976.Indices examined included frequencies of daily maximum and minimum temperatures, above and below specified percentile levels and at those levels, as well as frequencies of these above and below fixed temperature thresholds. Extreme daily rainfall intensity and frequency above the 95th percentile and the length of consecutive dry day sequences were the rainfall indices selected.There were no significant trends in maximum temperature extremes ('hot days') but a significant increase in minimum temperatures was associated with decreases in the frequency of extreme 'cold nights' over the 48-year period. There was a non-significant tendency for an increase in the frequency of maximum temperature extremes in the north and northeast of New Zealand. A decline occurred in frequency of the minimum temperature 5th percentile ('cold nights') of 10-20 days a year in many locations. Trends in rainfall indices show a zonal pattern of response, with the frequency of 1-day 95th percentile extremes decreasing in the north and east, and increasing in the west over the 1951-1996 period.Changes in the frequency of threshold temperatures above 24.9°C (25°C days) and below 0°C (frost days) are strongly linked to atmospheric circulation changes, coupled with regional warming. From 1930 -1950 more south to southwest anomalous flow occurred relative to later years. In this period, 25°C days were less frequent in all areas except the northeast, and there was markedly more frost days in all but inland areas of the South Island compared with the 1951-1975 period. There was more airflow from the east and northeast from 1951 to 1975, the frequency of 25°C days increased and frost days decreased in many areas of New Zealand. In the final period examined , more prevalent airflow from the west and southwest was accompanied by more anticyclonic conditions. Days with a temperature of 25°C increased in the northeast only. Frost day frequencies decreased between 5 and 15 days a year in many localities, with little change in the west of the South Island and at higher elevation locations.
Daily rainfall records from 22 high-quality stations located in the South Pacific were analysed, over the common period 1961-2000, in order to assess whether extreme rainfall events have altered in their frequency or magnitude. A comprehensive spatial coverage across the South Pacific was provided, analysing a range of indices of extreme precipitation, which reflect both high rainfall events and drought. Clear spatial patterns emerged in the trends of extreme rainfall indices, with a major discontinuity across the diagonal section of the South Pacific Convergence Zone (SPCZ).Stations located between 180 and 155°W exhibit a greater number of significant abrupt changes in extreme climate than elsewhere in the South Pacific, and the majority of climatic jumps occur in the 1970s or 1980s (coincident with a displacement northeastward of the diagonal part of the SPCZ and a large local increase in mean annual temperature). Notably, all significant abrupt changes in an extreme rainfall intensity index occurred in the late 1970s or early 1980s, and in every case the index showed an increase in extremity following the change point, regardless of station location. For the stations located south of the SPCZ, this may also be linked to the observed warming since the 1970s. Significant abrupt changes in mean precipitation were also identified around the mid 1940s, for two longer, century-scale records, which again correspond to a major displacement of the diagonal section of the SPCZ.An indicator of the diagonal SPCZ position is significantly temporally correlated with an extreme rainfall intensity index, at two locations either side of the diagonal section of the SPCZ, at decadal time scales or longer. This suggests that the displacement of the diagonal portion of the SPCZ on decadal time scales influences not only mean precipitation, but also daily rainfall extremes.
This article examines the influence of El Niño Southern Oscillation (ENSO), Southern Annular Mode (SAM) and Interdecadal Pacific Oscillation (IPO) on the synoptic weather types over New Zealand. The effects of ENSO (indicated by the Southern Oscillation Index, SOI), SAM and IPO on the occurrence of synoptic types are estimated in a holistic framework using the maximum likelihood method via applications of generalized linear models, both annually and by seasons. The average within-class variations in the intensity and air-mass characteristics (as expressed in the Auckland Airport meteorological variables) of synoptic systems were examined for individual types at the annual level. The results show that ENSO, SAM and IPO have significant effects on the probability of occurrence and to lesser degree the intensity and air-mass characteristics of some synoptic types. The effects vary considerably with seasons, synoptic types and phases of SOI, SAM and IPO and it is the confounding effects of different large-scale modes that lead to the observed changes in the type frequencies. The findings, with respect to ENSO and SAM in all cases and for IPO at the seasonal level, are in good agreement with the literature. However, the annual changes in type frequencies associated with the 1976/1977 IPO phase shift do not support the observed changes in the strength of anomalous southwesterly windflows over New Zealand, and the influence of the recent negative IPO phase also appears different from what we expect based on the existing research. It appears that the interaction between IPO and ENSO is important for understanding the observed climatic effects of IPO on New Zealand's weather and climate. This aspect deserves further attention in future studies. The findings from this work have important methodological and practical implications for New Zealand climate research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.