BackgroundRespiratory rate is among the first vital signs to change in deteriorating patients. The aims of this study were to evaluate the accuracy of respiratory rate measurements using a specifically dedicated reflection-mode photoplethysmographic signal analysis in a pathological condition (PPG-RR) and to validate its implementation within medical devices.MethodsThis study is derived from a data mining project, including all consecutive patients admitted to our ICU (ReaSTOC study, ClinicalTrials.gov identifier: NCT02893462). During the evaluation phase of the algorithm, PPG-RR calculations were retrospectively performed on PPG waveforms extracted from the data warehouse and compared with RR reference values. During the prospective phase, PPG-RR calculations were automatically and continuously performed using a dedicated device (FreeO2, Oxynov, Québec, QC, Canada). In all phases, reference RR was measured continuously using electrical thoracic impedance and chronometric evaluation (Manual-RR) over a 30-s period.ResultsIn total, 201 ICU patients’ recordings (SAPS II 51.7 ± 34.6) were analysed during the retrospective evaluation phase, most of them being admitted for a respiratory failure and requiring invasive mechanical ventilation. PPG-RR determination was available in 95.5% cases, similar to reference (22 ± 4 vs. 22 ± 5 c/min, respectively; p = 1), and well correlated with reference values (R = 0.952; p < 0.0001), with a low bias (0.1 b/min) and deviation (± 3.5 b/min). Prospective estimation of the PPG-RR on 30 ICU patients’ recordings was well correlated with the reference method (Manual-RR; r = 0.78; p < 0.001). Comparison of the methods depicted a low bias (0.5 b/min) and acceptable deviation (< ± 5.5 b/min).ConclusionAccording to our results, PPG-RR is an interesting approach for ventilation monitoring, as this technique would make simultaneous monitoring of respiratory rate and arterial oxygen saturation possible, thus minimizing the number of sensors attached to the patient.Trial registry number ClinicalTrials.gov identifier NCT02893462
OBJECTIVES: The mechanisms of high-flow nasal cannula are still debated but may be mediated by the generation of low positive end-expiratory pressure and a washout of the airway dead space. The aims of this study were to assess the effects of high-flow nasal cannula on tidal volume using a noninvasive method using a time-of-flight camera, under various conditions. DESIGN: A physiologic evaluation in healthy volunteers. SETTING: An university hospital ICU. SUBJECTS: Ten healthy volunteers were included in a physiologic study (CamOpt study, ClinicalTrials.gov identifier: NCT04096183). INTERVENTIONS: All volunteers were submitted to 12 different conditions (i.e., gas flow [baseline = 0; 30–60 L/min]; mouth [open/closed]; respiratory rate [baseline; baseline + 10 breaths/min]). Tidal volume measurements were performed every minute, during a 6-minute recording period. In all combinations, reference respiratory rate was measured by using chronometric evaluation, over a 30-second period (RRREF), and by using the time-of-flight camera (RRTOF). MEASUREMENTS AND MAIN RESULTS: Tidal volume increased while increasing gas flow whatever the respiratory rate and mouth condition (p < 0.001). Similar results were observed whatever the experimental conditions (p < 0.01), except one (baseline respiratory rate + 10 breaths/min and mouth closed). Tidal volume increased while decreasing respiratory rate (p < 0.001) and mouth closing (p < 0.05). Proportion of tidal volume greater than 10, 15, and 20 mL/kg changed while increasing the flow. RRTOF was in agreement with RRREF (intraclass correlation coefficient, 0.96), with a low mean bias (0.55 breaths/min) and acceptable deviation. CONCLUSIONS: Time-of-flight enables to detect tidal volume changes under various conditions of high-flow nasal cannula application. Tidal volume increased significantly while increasing gas flow and mouth closing. Such technique might be useful to monitor the risk of patient self-inflicted lung injury or under assistance.
Scedosporium species are opportunistic pathogens responsible for a large variety of infections in humans. An increasing occurrence was observed in patients with underlying conditions such as immunosuppression or cystic fibrosis. Indeed, the genus Scedosporium ranks the second among the filamentous fungi colonizing the respiratory tracts of the CF patients. To date, there is very scarce information on the pathogenic mechanisms, at least in part because of the limited genetic tools available. In the present study, we successfully developed an efficient transformation and targeted gene disruption approach on the species Scedosporium aurantiacum. The disruption cassette was constructed using double-joint PCR procedure, and resistance to hygromycin B as the selection marker. This proof of concept was performed on the functional gene SODC encoding the Cu,Zn-superoxide dismutase. Disruption of the SODC gene improved susceptibility of the fungus to oxidative stress. This technical advance should open new research areas and help to better understand the biology of Scedosporium species.
IntroductionHypoxaemia and hyperoxaemia may occur after surgery, with related complications. This multicentre and randomised trial evaluated the impact of automated closed-loop oxygen administration after high-risk abdominal or thoracic surgeries in terms of optimising the SpO2 time within target range.MethodsAfter extubation, patients with an intermediate to high risk for postoperative pulmonary complications were randomised to Standard or Automated closed-loop oxygen administration. The primary outcome was the percentage of time within the oxygenation range, during a 3-day frame. The secondary outcomes were the time with hypoxaemia and hyperoxaemia under oxygen.ResultsAmong the 200 patients, time within range was higher in the Automated group, both initially (≤3-h; 91.4±13.7 versus 40.2±35.1% of time; difference +51.0% [CI95% −42.8;59.2]; p<0.0001) and during the 3-day period (94.0±11.3 versus 62.1±23.3% of time; difference +31.9% [CI95% 26.3;37.4]; p<0.0001). Periods of hypoxaemia were reduced in the Automated group (≤3 days; 32.6±57.8 [1.2±1.9%] versus 370.5±594.3 min [5.0±11.2%]; difference −10.2% [CI95% −13.9;-6.6]; p<0.0001), as well as hyperoxaemia under oxygen (≤3 days; 5.1±10.9 [4.8±11.2%] versus 177.9±277.2 min [27.0±23.8%]; difference −22.0% [CI95% −27.6;-16.4]; p<0.0001). Kaplan-Meier analysis depicted a significant difference in terms of hypoxaemia (p=0.01) and severe hypoxaemia (p=0.0003) occurrence between groups in favour of the Automated group. Twenty-five patients experienced hypoxaemia for more than 10% of the entire monitoring time during the 3 days within the Standard group, as compared to the Automated group (p<0.0001).ConclusionAutomated closed-loop oxygen administration promotes greater time within the oxygenation target, as compared to Standard manual administration, thus reducing the occurrence of hypoxaemia and hyperoxaemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.