The activity of neurons in the primary visual cortex of the awake macaque monkey was recorded while the animals were viewing full screen arrays of either oriented line segments or moving random dots. A square patch of the screen was made to perceptually pop out as a circumscribed figure by virtue of differences between the orientation or the direction of motion of the texture elements within that patch and the surround. The animals were trained to identify the figure patches by making saccadic eye movements towards their positions. Almost every cell gave a significantly larger response to elements belonging to the figure than to similar elements belonging to the background. The figure- ground response enhancement was present along the entire extent of the patch and was absent as soon as the receptive field was outside the patch. The strength of the effect had no relation with classical receptive field properties like orientation or direction selectivity or receptive field size. The response enhancement had a latency of 30–40 msec relative to the onset of the neuronal response itself. The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.
We studied extra-receptive field contextual modulation in area V1 of awake, behaving macaque monkeys. Contextual modulation was studied using texture displays in which texture covering the receptive field (RF) was the same in all trials, but the perceptual context of this texture could vary depending on the configuration of extra-RF texture elements. We found robust contextual modulation when disparity, color, luminance, and orientation cues variously defined a textured figure centered on the RF of V1 neurons. We found contextual modulation to have a spatial extent of approximately 8 to 10 degrees diameter parafoveally. Contextual modulation correlated with perceptual experience of both binocularly rivalrous texture displays and of displays with a simple example of surface occlusion. We found contextual modulation in V1 to have a characteristic latency of 80-100 msec after stimulus onset, potentially allowing feedback from extrastriate areas to underlie to this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.