The focus of this study was to demonstrate that, in the luminescent sensors, the signal transduction may possibly be the most important part in the sensing process. Rational design of fluorescent sensor arrays for cations utilizing extended conjugated chromophores attached to 8-hydroxyquinoline is reported. All of the optical sensors utilized in the arrays comprise the same 8-hydroxyquinoline (8-HQ) receptor and various conjugated chromophores to yield a different response to various metal cations. This is because the conjugated chromophores attached to the receptor are partially quenched in their resting state, and upon the cation coordination by the 8-HQ, the resulting metalloquinolinolate complex displays a change in fluorescence. A delicate balance of conjugation, fluorescence enhancement, energy transfer, and a heavy metal quenching effect results in a fingerprint-like pattern of responses for each sensor-cation complex. Principal component analysis (PCA) and linear discriminant analysis (LDA) are used to demonstrate the contribution of individual sensors within the array, information that may be used to design sensor arrays with the smallest number of sensor elements. This approach allows discriminating between 10 cations by as few as two or even one sensor element. Examples of arrays comprising various numbers of sensor elements and their utility in qualitative identification of Ca(2+), Mg(2+), Cd(2+), Hg(2+), Co(2+), Zn(2+), Cu(2+), Ni(2+), Al(3+), and Ga(3+) ions are presented. A two-member array was found to identify 11 analytes with 100% accuracy. Also the best two of the sensors were tested alone and both were found to be able to discriminate among the samples with 99% and 96% accuracy, respectively. To illustrate the utility of this approach to a real-world application, identification of enhanced soft drinks based on their Ca(2+), Mg(2+), and Zn(2+) cation content was performed. The same approach to reducing array elements was used to construct three- and two-member arrays capable of identifying these complex analytes with 100% accuracy.
The unique electron-transport and emissive properties of tris(8-quinolinolate) aluminum(III) (Alq(3)) have resulted in extensive use of this material for small molecular organic light-emitting diode (OLED) fabrication. So far, efforts to prepare stable and easy-to-process red/green/blue (RGB)-emitting Alq(3) derivatives have met with only a limited success. In this paper, we describe how the electronic nature of various substituents, projected via an arylethynyl or aryl spacer to the position of the highest HOMO density (C5), may be used for effective emission tuning to obtain blue-, green-, and red-emitting materials. The synthetic strategy consists of four different pathways for the attachment of electron-donating and electron-withdrawing aryl or arylethynyl substituents to the 5-position of the quinolinolate ring. Successful tuning of the emission color covering the whole visible spectrum (lambda=450-800 nm) was achieved. In addition, the photophysical properties of the luminophores were found to correlate with the Hammett constant of the respective substituents, providing a powerful strategy with which to predict the optical properties of new materials. We also demonstrate that the electronic nature of the substituent affects the emission properties of the resulting complex through effective modification of the HOMO levels of the quinolinolate ligand.
Donor-bridge-acceptor triads consisting of the Alq3 complex, oligofluorene bridge, and PtII tetraphenylporphyrin (PtTPP) were synthesized. The triads were designed to study the energy level/distance-dependence in energy transfer both in a solution and in solid state. The materials show effective singlet transfer from the Alq3-fluorene fluorophore to the porphyrin, while the triplet energy transfer, owing to the shorter delocalization of triplet excitons, appears to take place via a triplet energy cascade. Using femtosecond transient spectroscopy, the rate of the singlet-singlet energy transfer was determined. The exponential dependence of the donor-acceptor distance and the respective energy transfer rates of 7.1 x 1010 to 1.0 x 109 s-1 with the attenuation factor â of 0.21 +/- 0.02 A-1 suggest that the energy transfer proceeds via a mixed incohererent wire/superexchange mechanism. In the OLEDs fabricated using the Alq3-oligofluorene-PtTPP triads with better triplet level alignment, the order of a magnitude increase in efficacy appears to be due to facile triplet energy transfer. The devices, where the triplet-triplet energy transfer is of paramount importance, showed high color purity emission (CIE X,Y: 0.706, 0.277), which is almost identical to the emission from thin films. Most importantly, we believe that the design principles demonstrated above are general and may be used to prepare OLED materials with enhanced quantum efficacy at lowered operational potentials, being crucial for improved lifespan of OLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.