Global quantification of protein abundances in single cells could provide direct information on cellular phenotypes and complement transcriptomics measurements. However, single-cell proteomics is still immature and confronts many technical challenges. Herein we describe a nested nanoPOTS (N2) chip to improve protein recovery, operation robustness, and processing throughput for isobaric-labeling-based scProteomics workflow. The N2 chip reduces reaction volume to <30 nL and increases capacity to >240 single cells on a single microchip. The tandem mass tag (TMT) pooling step is simplified by adding a microliter droplet on the nested nanowells to combine labeled single-cell samples. In the analysis of ~100 individual cells from three different cell lines, we demonstrate that the N2 chip-based scProteomics platform can robustly quantify ~1500 proteins and reveal membrane protein markers. Our analyses also reveal low protein abundance variations, suggesting the single-cell proteome profiles are highly stable for the cells cultured under identical conditions.
Global quantification of protein abundances in single cells would provide more direct information on cellular function phenotypes and complement transcriptomics measurements. However, single-cell proteomics (scProteomics) is still immature and confronts technical challenges, including limited proteome coverage, poor reproducibility, as well as low throughput. Here we describe a nested nanowell (N2) chip to dramatically improve protein recovery, operation robustness, and processing throughput for isobaric-labeling-based scProteomics workflow. The N2 chip allows reducing cell digestion volume to <30 nL and increasing processing capacity to > 240 single cells in one microchip. In the analysis of ~100 individual cells from three different cell lines, we demonstrate the N2 chip-based scProteomics platform can robustly quantify ~1500 proteins and reveal functional differences. Our analysis also reveals low protein abundance variations (median CVs < 16.3%), highlighting the utility of such measurements, and also suggesting the single-cell proteome is highly stable for the cells cultured under identical conditions.
In this article the author name Chia-Feng Tsai was incorrectly written as Chai-Feng Tsai.The grant number U01 HL148860 relating to NIH grants for Joshua N. Adkins and Geremy C. Clair was omitted. The original article has been corrected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.