Graphs can be used to represent and reason about systems and a variety of metrics have been devised to quantify their global characteristics. However, little is currently known about how to construct a graph or improve an existing one given a target objective. In this work, we formulate the construction of a graph as a decision-making process in which a central agent creates topologies by trial and error and receives rewards proportional to the value of the target objective. By means of this conceptual framework, we propose an algorithm based on reinforcement learning and graph neural networks to learn graph construction and improvement strategies. Our core case study focuses on robustness to failures and attacks, a property relevant for the infrastructure and communication networks that power modern society. Experiments on synthetic and real-world graphs show that this approach can outperform existing methods while being cheaper to evaluate. It also allows generalization to out-of-sample graphs, as well as to larger out-of-distribution graphs in some cases. The approach is applicable to the optimization of other global structural properties of graphs.
There has been an increasing interest in the problem of inferring emotional states of individuals using sensor and user-generated information as diverse as GPS traces, social media data and smartphone interaction patterns. One aspect that has received little attention is the use of visual context information extracted from the surroundings of individuals and how they relate to it. In this paper, we present an observational study of the relationships between the emotional states of individuals and objects present in their visual environment automatically extracted from smartphone images using deep learning techniques. We developed MyMood, a smartphone application that allows users to periodically log their emotional state together with pictures from their everyday lives, while passively gathering sensor measurements. We conducted an in-the-wild study with 22 participants and collected 3,305 mood reports with photos. Our findings show context-dependent associations between objects surrounding individuals and self-reported emotional state intensities. The applications of this work are potentially many, from the design of interior and outdoor spaces to the development of intelligent applications for positive behavioral intervention, and more generally for supporting computational psychology studies.
Distributed workload queues are nowadays widely used due to their significant advantages in terms of decoupling, resilience, and scaling. Task allocation to worker nodes in distributed queue systems is typically simplistic (e.g., Least Recently Used) or uses hand-crafted heuristics that require task-specific information (e.g., task resource demands or expected time of execution). When such task information is not available and worker node capabilities are not homogeneous, the existing placement strategies may lead to unnecessarily large execution timings and usage costs. In this work, we investigate the task allocation problem within the Markov Decision Process framework, where an agent assigns tasks to an available resource, by receiving a numerical reward signal upon task completion. This allows our solution to learn effective task allocation strategies directly from experience in a completely dynamic way. In particular, we present the design, implementation, and experimental evaluation of RLQ (Reinforcement Learning based Queues), i.e., our adaptive and learning-based task allocation solution that we have implemented and integrated with the popular Celery task queuing system. By using both synthetic and real workload traces, we compare RLQ against traditional solutions, such as Least Recently Used. On average, using synthetic workloads, RLQ reduces the execution time by a factor of at least 3×. When considering the execution cost, the reduction is around 70%, whereas for the time waited before execution, the reduction is close to a factor of 7×. Using real traces, we observe around 70% improvement for execution time, around 20% for execution cost and a reduction of approximately 20× for waiting time. We also analyze RLQ performance against E-PVM, a state-of-the-art solution used in Google's Borg, showing that we are able to outperform it in the synthetic data evaluation, while we outperform it in all the three settings based on real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.