We investigated in the black‐headed gull whether female deposition of antioxidants and immunoglobulins (enhancing early immune function), and testosterone (suppressing immune function and increasing early competitive skills) correlate suggesting that evolution has favoured the mutual adjustment of different pathways for maternal effects. We also took egg mass, the position of the egg in the laying sequence and offspring sex into account, as these affect offspring survival. Yolk antioxidant and immunoglobulin concentrations decreased across the laying order, while yolk testosterone concentrations increased. This may substantially handicap the immune defence of last‐hatched chicks. The decrease in antioxidant levels was greater when mothers had a low body mass and when the increase in testosterone concentrations was relatively large. This suggests that female black‐headed gulls are constrained in the deposition of antioxidants in last‐laid eggs and compensate for this by enhanced testosterone deposition. The latter may be adaptive since it re‐allocates the chick's investment from costly immune function to growth and competitive skills, necessary to overcome the consequences of hatching late from an egg of reduced quality.
Only natural selection can account for the extreme genetic diversity of genes of the major histocompatibility complex (MHC). Although the structure and function of classic MHC genes is well understood at the molecular and cellular levels, there is controversy about how MHC diversity is selectively maintained. The diversifying selection can be driven by pathogen interactions and inbreeding avoidance mechanisms. Pathogen-driven selection can maintain MHC polymorphism based on heterozygote advantage or frequency-dependent selection due to pathogen evasion of MHC-dependent immune recognition. Empirical evidence demonstrates that specific MHC haplotypes are resistant to certain infectious agents, while susceptible to others. These data are consistent with both heterozygote advantage and frequency-dependent models. Additional research is needed to discriminate between these mechanisms. Infectious agents can precipitate autoimmunity and can potentially contribute to MHC diversity through molecular mimicry and by favoring immunodominance. MHC-dependent abortion and mate choice, based on olfaction, can also maintain MHC diversity and probably functions both to avoid genome-wide inbreeding and produce MHC-heterozygous offspring with increased immune responsiveness. Although this diverse set of hypotheses are often treated as competing alternatives, we believe that they all fit into a coherent, internally consistent thesis. It is likely that at least in some species, all of these mechanisms operate, leading to the extreme diversification found in MHC genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.