Organic compounds bearing radioisotopes of iodine are widely used for biological research, diagnostic imaging, and radiotherapy. Early reported synthetic methods for the incorporation of radioiodine have generally involved high temperature reactions or strongly oxidizing conditions. To overcome these limitations and to cope with the demand for novel radioiodinated probes, there has been a surge in the development of new synthetic methodology for radioiodination. This synopsis describes the key transformations developed recently.
Carbon isotope labeling is a traceless technology, which allows tracking the fate of organic compounds either in the environment or in living organisms. This article reports on a general approach...
A photocatalytic approach for carbon isotope exchange is reported. Utilizing [ 13 C]CO 2 and [ 14 C]CO 2 as primary C1 sources, this protocol allows the insertion of the desired carbon isotope into phenyl acetic acids without the need for structural modifications or prefunctionalization in one single step. The exceptionally mild conditions required for this traceless transformation are in stark contrast with those for previous methods requiring the use of harsh thermal conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.