Islands harbour a spectacular diversity and unique species composition. This uniqueness is mainly a result of endemic species that have evolved
in situ
in the absence of mammal herbivores. However, island endemism is under severe threat by introduced herbivores. We test the assumption that endemic species are particularly vulnerable to generalist introduced herbivores (European rabbit) using an unprecedented dataset covering an entire island with enormous topographic, climatic and biological diversity (Tenerife, Canary Islands). With increasing endemism, plant species are more heavily browsed by rabbits than non-endemic species with up to 67% of endemics being negatively impacted by browsing, indicating a dramatic lack of adaptation to mammal herbivory in endemics. Ecosystems with high per cent endemism are most heavily browsed, suggesting ecosystem-specific vulnerability to introduced herbivores, even within islands. Protection of global biodiversity caused by disproportionally high endemism on oceanic islands via ecosystem-specific herbivore control and eradication measures is of utmost importance.
The recurrence of fires has increased considerably due to human activity, affecting even forests where traditionally fire is uncommon. In this study, we verify the effects of degradation caused by fire in the Canarian laurel forests, which is a subtropical forest formation restricted to the humid montane areas of these Macaronesian islands. We evaluated the effect of fire by comparing a series of burned plots corresponding to fires from 1960, 1984, 1995, to 2012 with geographically proximate and comparable unburned plots in the Garajonay National Park (La Gomera Island, Spain). We focused on three aspects that are immediately altered by fire: forest structure, floristic composition, and microclimate. These aspects have been quantified using (a) tree density, the Pielou index using tree height classes, and DBH for the vertical structure of the forest; (b) DCA, the Bray Curtis dissimilarity index, and a species indicator analysis for the floristic composition; and (c) temperature and relative humidity for microclimate under three canopy cover conditions. Our results reveal that, overall, structural complexity and its composition in the burned areas have barely reached 40% and 35%, respectively, when compared with unburned areas, and recovery mainly depends on time since fire. Additionally, burned plots presented more pioneer species, a higher density of trees, and climatic variables tend to have a wider range throughout the day. These data reveal the long time span that this ecosystem needs for recovery to a prefire state and how it may be more prone to subsequent fire events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.