Lessons from maritime accidents are conventionally used to inform safety improvements in design and operation of ships. However, this process is only as good as the core understanding derived from accident analysis is. The current explanation of accidents is limited to direct and contributing causal factors, whereas the role of a wider socio-technical context that has given rise to causal mechanisms behind major maritime accidents in recent years is left unexplained. The paper describes analysis results of maritime incidents and accidents occurred over the last decade with passenger ships, with the purpose to illuminate the prevailing causal factors, not least the systemic ones. The results show where the weak links in maritime safety control are (e.g., interactions between ship operators and equipment manufacturers), what their role in accident causation is, and how they can be strengthened. The study seeks to provide valuable input for enhancements in overall maritime safety control and proactive safety management at the ship and shipping company levels.
Diesel–Electric Propulsion (DEP) has been widely used for the propulsion of various ship types including cruise ships. Considering the potential consequences of blackouts, especially on cruise ships, it is essential to design and operate the ships’ power plants for avoiding and preventing such events. This study aims at implementing a comprehensive safety analysis for a cruise ship Diesel–Electric Propulsion (DEP) plant focusing on blackout events. The Combinatorial Approach to Safety Analysis (CASA) method is used to develop Fault Trees considering the blackout as the top event, and subsequently estimate the blackout frequency as well as implement importance analysis. The derived results demonstrate that the overall blackout frequency is close to corresponding values reported in the pertinent literature as well as estimations based on available accident investigations. This study deduces that the blackout frequency depends on the number of operating Diesel Generator (DG) sets, the DG set’s loading profile, the amount of electrical load that can be tripped during overload conditions and the plant operation phase. In addition, failures of the engine auxiliary systems and the fast-electrical load reduction functions, as well as the power generation control components, are identified as important. This study demonstrates the applicability of the CASA method to complex marine systems and reveals the parameters influencing the investigated system blackout frequency, thus providing better insights for these systems’ safety analysis and enhancement.
His research focuses on the development of scientific approaches to holistically capture the safety, energy and sustainability interplay of the complex marine systems including cyber-physical and autonomous systems by employing advanced model-based methods and tools for their design and optimisation pursuing life-cycle risk and energy management, efficiency improvement, and safety and sustainability enhancement. He is a member of the IMarEST Scottish branch committee responsible for the young members early career professionals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.