Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins to silencer elements in the exon and that down-regulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This article demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.Alternative splicing of pre-mRNA leads to the synthesis of multiple protein isoforms from a single gene. It is an important mechanism for regulating gene expression and may be utilized by 40 -60% of human genes (1-4). Thus, the estimated 25,000 to 30,000 genes of the human genome can generate a much larger number of proteins. Regulation of alternative splicing occurs in both a tissue-and development-specific manner, resulting in alterations in the structure and function of critical proteins. Altered splicing regulation can also be of widespread importance in the etiology of human disease (5-7).The protein 4.1 gene family serves as an excellent model for investigating the regulation of alternative splicing. The four genes that comprise the family (4 .1R, 4.1G, 4.1B, and 4.1N) display a remarkable array of highly regulated, tissue-specific splicing events. These alternative splicing events facilitate expression of distinct isoforms of 4.1 protein in cells of erythroid, epithelial, neural, and muscle origin (8 -14); thus, they provide opportunities for understanding the mechanisms that regulate alternative splicing in several different cell types. To date, mechanistic studies have focused predominantly on erythroid cells, in which 4.1R protein is a structural component of the erythrocyte plasma membrane and is important for structural integrity and stability of the membrane skeleton. In differentiating erythroid progenitor cells, a dramatic switch in pre-mRNA splicing result...
A physiologically important alternative pre-mRNA splicing switch, involving activation of protein 4.1R exon 16 (E16) splicing, is required for the establishment of proper mechanical integrity of the erythrocyte membrane during erythropoiesis. Here we identify a conserved exonic splicing silencer element (CE 16 ) in E16 that interacts with hnRNP A/B proteins and plays a role in repression of E16 splicing during early erythropoiesis. Experiments with model premRNAs showed that CE 16 can repress splicing of upstream introns, and that mutagenesis or replacement of CE 16 can relieve this inhibition. An af®nity selection assay with biotinylated CE 16 RNA demonstrated speci®c binding of hnRNP A/B proteins. Depletion of hnRNP A/B proteins from nuclear extract signi®cantly increased E16 inclusion, while repletion with recombinant hnRNP A/B restored E16 silencing. Most importantly, differentiating mouse erythroblasts exhibited a stage-speci®c activation of the E16 splicing switch in concert with a dramatic and speci®c down-regulation of hnRNP A/B protein expression. These ®ndings demonstrate that natural developmental changes in hnRNP A/B proteins can effect physiologically important switches in premRNA splicing. Keywords: alternative splicing/exonic splicing silencer/ hnRNP A and B/protein 4.1R
Background. Meningococcal outer membrane vesicle (OMV) vaccines are efficacious in humans but have serosubtype-specific serum bactericidal antibody responses directed at the porin protein PorA and the potential for immune selection of PorA-escape mutants.Methods. We prepared an OMV vaccine from a Neisseria meningitidis strain engineered to overexpress genome-derived neisserial antigen (GNA) 1870, a lipoprotein discovered by genome mining that is being investigated for use in a vaccine.Results. Mice immunized with the modified GNA1870-OMV vaccine developed broader serum bactericidal antibody responses than control mice immunized with a recombinant GNA1870 protein vaccine or an OMV vaccine prepared from wild-type N. meningitidis or a combination of vaccines prepared from wild-type N. meningitidis and recombinant protein. Antiserum from mice immunized with the modified GNA1870-OMV vaccine also elicited greater deposition of human C3 complement on the surface of live N. meningitidis bacteria and greater passive protective activity against meningococcal bacteremia in infant rats. A N. meningitidis mutant with decreased expression of PorA was more susceptible to bactericidal activity of anti-GNA1870 antibodies.Conclusions. The modified GNA1870-OMV vaccine elicits broader protection against meningococcal disease than recombinant GNA1870 protein or conventional OMV vaccines and also has less risk of selection of PorA-escape mutants than a conventional OMV vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.