Objective Although MRI is the optimal imaging modality to define cerebral white-matter injury (WMI) in preterm survivors, the histopathological features of MRI-defined chronic lesions are poorly defined. We hypothesized that chronic WMI is related to a combination of delayed oligodendrocyte (OL) lineage cell death and arrested maturation of pre-oligodendrocytes (preOLs). We determined whether ex vivo MRI can distinguish distinct microglial and astroglial responses related to WMI progression and arrested preOL differentiation. Methods We employed a preterm fetal sheep model of global cerebral ischemia where acute WMI results in selective preOL degeneration. We developed novel algorithms to register histopathologically defined lesions with contrast- and diffusion-weighted high-field ex vivo MRI data. Results Despite mild delayed preOL degeneration, preOL density recovered to control levels by 7 days after ischemia and was ~2 fold greater at 14 days. However, pre-myelinating OLs were significantly diminished at 7 and 14 days. WMI evolved to mostly gliotic lesions where arrested preOL differentiation was directly proportional to the magnitude of astrogliosis. A reduction in cerebral WM volume was accompanied by four classes of MRI-defined lesions. Each lesion type displayed unique astroglial and microglial responses that corresponded to distinct forms of necrotic or non-necrotic injury. High-field MRI defined two novel hypo-intense signal abnormalities on T2-weighted images that coincided with microscopic necrosis or identified astrogliosis with high sensitivity and specificity. Interpretation These studies support the potential of high-field MRI for early identification of microscopic necrosis and gliosis with preOL maturation arrest, a common form of WMI in preterm survivors.
Objective Recently we reported that the neocortex displays impaired growth after transient cerebral hypoxia-ischemia (HI) at preterm gestation that is unrelated to neuronal death but is associated with decreased dendritic arbor complexity of cortical projection neurons. We hypothesized that these morphological changes constituted part of a more widespread neuronal dysmaturation response to HI in the caudate nucleus (CN), which contributes to motor and cognitive disability in preterm survivors. Methods Ex vivo magnetic resonance imaging (MRI), immunohistochemistry and Golgi staining defined CN growth, cell death, proliferation and dendritic maturation in preterm fetal sheep four weeks after HI. Patch-clamping recording was used to analyze glutamatergic synaptic currents in CN neurons. Results MRI-defined growth of the CN was reduced after ischemia compared to controls. However, no significant acute or delayed neuronal death was seen in the CN or white matter. Neither was there significant loss of calbindin-positive medium spiny projection neurons (MSNs) or CN interneurons expressing somatostatin, calretinin, parvalbumin, or tyrosine hydroxylase. Morphologically, ischemic MSNs showed a markedly immature dendritic arbor, with fewer dendritic branches, nodes, endings and spines. The magnitude and kinetics of synaptic currents, and the relative contribution of glutamate receptor subtypes in the CN were significantly altered. Interpretation The marked MSN dendritic and functional abnormalities after preterm cerebral HI, despite the marked resistance of immature CN neurons to cell death, are consistent with widespread susceptibility of projection neurons to HI-induced dysmaturation. These global disturbances in dendritic maturation and glutamatergic synaptic transmission suggest a new mechanism for long-term motor and behavioral disabilities in preterm survivors via widespread disruption of neuronal connectivity.
The COVID-19 global pandemic will require that most educators move instruction online, at least temporarily. As many of us pivot from physical to virtual classrooms, we need to focus on preserving the "high-impact educational practices" that promote deep student engagement with their learning (Kuh, 2008). Some high-impact practices, such as experiential education and research, are likely to
Background and PurposeAlthough the spectrum of perinatal white matter injury (WMI) in preterm infants is shifting from cystic encephalomalacia to milder forms of WMI, the factors that contribute to this changing spectrum are unclear. We hypothesized that the variability in WMI quantified by immunohistochemical markers of inflammation could be correlated with the severity of impaired blood oxygen, glucose and lactate.MethodsWe employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. Since there is small but measurable residual brain blood flow during occlusion, we sought to determine if the metabolic state of the residual arterial blood was associated with severity of WMI. Near the conclusion of hypoxia-ischemia, we recorded cephalic arterial blood pressure, blood oxygen, glucose and lactate levels. To define the spectrum of WMI, an ordinal WMI rating scale was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microgliosis derived from the entire white matter. ResultsA spectrum of WMI was observed that ranged from diffuse non-necrotic lesions to more severe injury that comprised discrete foci of microscopic or macroscopic necrosis. Residual arterial pressure, oxygen content and blood glucose displayed a significant inverse association with WMI and lactate concentrations were directly related. Elevated glucose levels were the most significantly associated with less severe WMI.ConclusionsOur results suggest that under conditions of hypoxemia and severe cephalic hypotension, WMI severity measured using unbiased immunohistochemical measurements correlated with several physiologic parameters, including glucose, which may be a useful marker of fetal response to hypoxia or provide protection against energy failure and more severe WMI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.