When two identical two-dimensional periodic structures are superposed, a mismatch rotation angle between the structures generates a superlattice. This effect is commonly observed in graphite, where the rotation between graphene layers generates Moiré patterns in scanning tunneling microscopy images. Here, a study of intravalley and intervalley double-resonance Raman processes mediated by static potentials in rotationally stacked bilayer graphene is presented. The peak properties depend on the mismatch rotation angle and can be used as an optical signature for superlattices in bilayer graphene. An atomic force microscopy system is used to produce and identify specific rotationally stacked bilayer graphenes that demonstrate the validity of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.