While plants are primarily sessile at the organismal level, they do exhibit a vast array of movements at the organ or sub-organ level. These movements can occur for reasons as diverse as seed dispersal, nutrition, protection or pollination. Their advanced mechanisms generate a myriad of movement typologies, many of which are not fully understood. In recent years, there has been a renewal of interest in understanding the mechanical behavior of plants from an engineering perspective, with an interest in developing novel applications by up-sizing these mechanisms from the micro-to the macro-scale. This literature review identifies the main strategies used by plants to create and amplify movements and anatomize the most recent mechanical understanding of compliant engineering mechanics. The paper ultimately demonstrates that plant movements, rooted in compliance and multi-functionality, can effectively inspire better kinematic/adaptive structures and materials. In plants, the actuators and the deployment structures are fused into a single system. The understanding of those natural movements therefore starts with an exploration of mechanisms at the origins of movements. Plant movements, whether slow or fast, active or passive, reversible or irreversible, are presented and detailed for their mechanical significance. With a focus on displacement amplification, the most recent promising strategies for actuation and adaptive systems are examined with respect to the mechanical principles of shape morphing plant tissues.
Form finding describes the process of finding a stable equilibrium shape for a system under a specific set of loads, for a set of boundary conditions and starting from an arbitrary initial geometry. However, form finding does not traditionally involve performance constraints such as energy-related criteria. Dialectic form finding is an extension of the process integrating energy-related design aspects. In this paper, dialectic form finding is employed as an approach for designing high performance architectural systems, driven by solar radiation control and structural efficiency. Two applications of dialectic form found shading enclosure structures, a passive and an active one, are presented. The first application example is a site-specific outdoor shading structure. The structure is based on a louver system designed to provide protection from ultraviolet radiation over a pre-defined target only when required, promoting natural lighting and ventilation. The second application example is a shape-shifting modular faç ade system that adapts its opacity in response to environmental fluctuations. The system can thus improve the environmental performance of a building. Moreover, the system explores elastic deformations for shape changes, reducing actuation requirements. These examples OPEN ACCESSEnergies 2014, 7 5202 highlight the potential of the dialectic form-finding strategy for the design of high performance architectural integrated structures.
Structural engineering, prompted by advances in mechanics and computing as well as design principles such as sustainability and resilience, is evolving towards adaptive structures. Adaptive structures are structures that use active components to change shape and properties in response to their environment and/or to their users' desires. Form-found structures, such as tensegrity and shell structures, can be designed to accommodate such changes within their structural behavior. Dialectic form finding is an extension of the traditional form-finding process integrating performance-related constraints and criteria in the search of a geometry in static equilibrium. Two examples of dialectic form-found structurally integrated adaptive structures are presented. The first example is a shape-shifting tensegrity-inspired structure, while the second example is a shapeshifting shell structure. Both systems are designed to explore elastic deformations for shape changes reducing actuation requirements and highlighting the potential of the proposed method.
The design of static thin shell structures can be carried out using analytical and numerical approaches. Recently, thin shells have been studied for their flexibility, which can be beneficial for adaptive systems. However flexible systems involve large displacements and precise kinematics. The analysis of flexible shell systems is challenging due to the nonlinearities induced by these large displacements. This study addresses the nonlinear behaviour and stress-stiffening effects caused by large displacements in a 0.80 m-long carbon fibre reinforced plastic shell consisting of two monolithically connected lobes. The structural behaviour of this system is investigated both numerically and experimentally. Following the analysis framework, the non-linear effects of the large displacements on the shell stiffness are numerically determined using eigenvalue analysis and the displacement response to external loading on deformed shell configurations. The numerical displacement results are compared with results obtained in the experimental study. In conclusion, our study shows that the stiffness of the shell system under study increases 113% during deformation. More precisely, we establish that this change in stiffness is governed by the presence of tensile stresses in the shell surface due to deployment rather than by the change of the system's geometry.
Thin shells are found across scales ranging from biological blood cells to engineered large-span roof structures. The engineering design of thin shells used as mechanisms has occasionally been inspired by biomimetic concept generators. The research goal of this paper is to establish the physical limits of scalability of shells. Sixty-four instances of shells across length scales have been organized into five categories: engineering stiff and compliant, plant compliant, avian egg stiff, and micro-scale compliant shells. Based on their thickness and characteristic dimensions, the mechanical behavior of these 64 shells can be characterized as 3D solids, thick or thin shells, or membranes. Two non-dimensional indicators, the Föppl–von Kármán number and a novel indicator, namely the gravity impact number, are adopted to establish the scalability limits of these five categories. The results show that these shells exhibit similar mechanical behavior across scales. As a result, micro-scale shell geometries found in biology, can be upscaled to engineered shell geometries. However, as the characteristic shell dimension increases, gravity (and its associated loading) becomes a hindrance to the adoption of thin shells as compliant mechanisms at the larger scales-the physical limit of compliance in the scaling of thin shells is found to be around 0.1 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.