This study aimed (i) to explore the relationship between vertical (jumping) and horizontal (sprinting) force–velocity–power (FVP) mechanical profiles in a large range of sports and levels of practice, and (ii) to provide a large database to serve as a reference of the FVP profile for all sports and levels tested. A total of 553 participants (333 men, 220 women) from 14 sport disciplines and all levels of practice participated in this study. Participants performed squat jumps (SJ) against multiple external loads (vertical) and linear 30–40 m sprints (horizontal). The vertical and horizontal FVP profile (i.e., theoretical maximal values of force (F0), velocity (v0), and power (Pmax)) as well as main performance variables (unloaded SJ height in jumping and 20-m sprint time) were measured. Correlations coefficient between the same mechanical variables obtained from the vertical and horizontal modalities ranged from −0.12 to 0.58 for F0, −0.31 to 0.71 for v0, −0.10 to 0.67 for Pmax, and −0.92 to −0.23 for the performance variables (i.e, SJ height and sprint time). Overall, results showed a decrease in the magnitude of the correlations for higher-level athletes. The low correlations generally observed between jumping and sprinting mechanical outputs suggest that both tasks provide distinctive information regarding the FVP profile of lower-body muscles. Therefore, we recommend the assessment of the FVP profile both in jumping and sprinting to gain a deeper insight into the maximal mechanical capacities of lower-body muscles, especially at high and elite levels.
The purpose of this study was to assess validity and reliability of sprint performance outcomes measured with an iPhone application (named: MySprint) and existing field methods (i.e. timing photocells and radar gun). To do this, 12 highly trained male sprinters performed 6 maximal 40-m sprints during a single session which were simultaneously timed using 7 pairs of timing photocells, a radar gun and a newly developed iPhone app based on high-speed video recording. Several split times as well as mechanical outputs computed from the model proposed by Samozino et al. [(2015). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.12490] were then measured by each system, and values were compared for validity and reliability purposes. First, there was an almost perfect correlation between the values of time for each split of the 40-m sprint measured with MySprint and the timing photocells (r = 0.989-0.999, standard error of estimate = 0.007-0.015 s, intraclass correlation coefficient (ICC) = 1.0). Second, almost perfect associations were observed for the maximal theoretical horizontal force (F), the maximal theoretical velocity (V), the maximal power (P) and the mechanical effectiveness (DRF - decrease in the ratio of force over acceleration) measured with the app and the radar gun (r = 0.974-0.999, ICC = 0.987-1.00). Finally, when analysing the performance outputs of the six different sprints of each athlete, almost identical levels of reliability were observed as revealed by the coefficient of variation (MySprint: CV = 0.027-0.14%; reference systems: CV = 0.028-0.11%). Results on the present study showed that sprint performance can be evaluated in a valid and reliable way using a novel iPhone app.
These results suggest that the simple method presented here is valid and reliable for computing CMJ force, velocity, power, and F-v profiles in athletes and could be used in practice under field conditions when body mass, push-off distance, and jump height are known.
Compared to SJ, F-v relationships were shifted to the right in CMJ, with higher P max, maximal theoretical force and velocity (+35.8, 20.6 and 13.3%, respectively). As in SJ, CMJ performance depends on Fv IMB, independently from the effect of P max, with the existence of an individual optimal F-v profile (Fv IMB having an even larger influence in CMJ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.