Fibroblast Growth Factor Receptor-1 (FGFR1) is commonly overexpressed in advanced prostate cancer (PCa). To investigate causality, we utilized an inducible FGFR1 (iFGFR1) prostate mouse model. Activation of iFGFR1 with chemical inducers of dimerization (CID) led to highly synchronous, step-wise progression to adenocarcinoma that is linked to an epithelial-to-mesenchymal transition (EMT). iFGFR1 inactivation by CID withdrawal led to full reversion of prostatic intraepithelial neoplasia, whereas PCa lesions became iFGFR1-independent. Gene expression profiling at distinct stages of tumor progression revealed an increase in EMT-associated Sox9 and changes in the Wnt signaling pathway, including Fzd4, which was validated in human PCa. The iFGFR1 model clearly implicates FGFR1 in PCa progression and demonstrates how CID-inducible models can help evaluate candidate molecules in tumor progression and maintenance.
Fibroblast growth factor receptors (FGFRs) comprise a subfamily of receptor tyrosine kinases (RTKs) that are master regulators of a broad spectrum of cellular and developmental processes, including apoptosis, proliferation, migration and angiogenesis. Due to their broad impact, FGFRs and other RTKs are highly regulated and normally only basally active. Deregulation of FGFR signaling by activating mutations or ligand/receptor overexpression could allow these receptors to become constitutively active, leading to cancer development, including both hematopoietic and solid tumors, such as breast, bladder and prostate carcinomas. In this review, we focus on potential modes of FGFR-mediated tumorigenesis, in particular, the role of FGFR1 during prostate cancer progression.
The expression of fibroblast growth factor receptor (FGFR)-1 correlates with angiogenesis and is associated with prostate cancer (CaP) progression. To more precisely define the molecular mechanisms whereby FGFR1 causes angiogenesis in the prostate we exploited a transgenic mouse model, JOCK-1, in which activation of a conditional FGFR1 allele in the prostate epithelium caused rapid angiogenesis and progressive hyperplasia. By labeling the vasculature in vivo and applying a novel method to measure the vasculature in three dimensions, we were able to observe a significant increase in vascular volume 1 week after FGFR1 activation. Although vessel volume and branching both continued to increase throughout a 6-week period of FGFR1 activation, importantly, we discovered that continued activation of FGFR1 was not required to maintain the new vasculature. Exploring the molecular mediators of the angiogenic phenotype, we observed consistent upregulation of HIF-1a, vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang-2), whereas expression of Ang-1 was lost. Further analysis revealed that loss of Ang-1 expression occurred in the basal epithelium, whereas the increase in Ang-2 expression occurred in the luminal epithelium. Reporter assays confirmed that the Ang-2 promoter was regulated by FGFR1 signaling and a small molecule inhibitor of FGFR activity, PD173074, could abrogate this response. These findings establish a method to follow spontaneous angiogenesis in a conditional autochthonous system, implicate the angiopoietins as downstream effectors of FGFR1 activation in vivo, and suggest that therapies targeting FGFR1 could be used to inhibit neovascularization during initiation and progression of CaP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.