A number of analyses, meta-analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power. energy systems modeling | climate change | renewable energy | energy costs | grid stability A number of studies, including a study by one of us, have concluded that an 80% decarbonization of the US electric grid could be achieved at reasonable cost (1, 2). The high level of decarbonization is facilitated by an optimally configured continental high-voltage transmission network. There seems to be some consensus that substantial amounts of greenhouse gas (GHG) emissions could be avoided with widespread deployment of solar and wind electric generation technologies along with supporting infrastructure.Furthermore, it is not in question that it would be theoretically possible to build a reliable energy system excluding all bioenergy, nuclear energy, and fossil fuel sources. Given unlimited resources to build variable energy production facilities, while expanding the transmission grid and accompanying energy storage capacity enormously, one would eventually be able to meet any conceivable load. However, in developing a strategy to effectively mitigate global energy-related CO2 emissions, it is critical that the scope of the challenge to achieve this in the real world is accurately defined and clearly communicated.Wind and solar are variable energy sources, and some way must be found to address the issue of how to provide energy if their immediate output cannot continuously meet instantaneous demand. The main options are to (i) curtail load (i.e., modify or fail to satisfy demand) at times when energy is not available, (ii) deploy very large amounts of energy storage, or (iii) provide supplemental energy sources that can be dispatched when needed. It is not yet clear how much it is possible to curtail loads, especially over long durations, without incurring large economic costs. There are no electric storage systems available today that can