A general model for fl ocs settling velocity is still an open fi eld of research in the scientifi c literature. In this work, a reduced model of an aquaculture recirculation tank was used to validate a model for fl oc settling velocity. Cohesive sediments from non-used food and fi sh excreta are a main concern in those tanks design. Excess concentrations of sediments can cause fi sh death or additional costs of energy for aeration. This research is aimed to understand the settling behavior of fl ocs when subjected to a liquid shear rate. A reduced scale model of an aquaculture recirculation tank was build in Plexiglas in order to use particle image velocimetry and particle tracking velocimetry techniques to measure fl uid velocities, solid settling velocities, fl ocs shape and size.Different fl ow rates and solid concentrations were used to develop varied confi gurations in the system; models for fl oc settling velocity based on fractal theory were calibrated. Cohesive sediments from fi sh food were observed in long-term experiments at constant fl uid shear rate in the recirculation tank. A group of 50 images were obtained for every 5 min. Image analysis provided us with fl oc settling velocity data and fl oc size. Using fl oc settling velocity data, fl oc density was obtained for different diameters at equilibrium conditions, after 1 h or larger experiments. Statistical analysis of fl oc velocities for different fl oc sizes allowed us to obtain an expression for the drag coeffi cient as a function of fl oc particle Reynolds number (R ep ). The results were compared with fl oc settling velocity results from different researchers. The model is able to defi ne the general behavior of fl oc settling velocity, which shows a reduction for larger fl ocs that is not taken into account in classical models. Only two parameters of the drag coeffi cient model for a permeable spherical particle are needed to be calibrated, for different types of sediments, in order to have more general applicability.
Cohesive sediments from non-used food and fish excreta are a main concern in aquaculture recirculation tank design. Excess concentrations of sediments can cause fish death or additional costs of energy for aeration. Flow dynamics in these tanks is represented as a multiphase flow with two disperse phases: one of solids (cohesive sediments) and one of gas (oxygen) because aeration is always needed. This research was carried out to understand the settling behavior of flocs when subjected to a liquid shear rate. A reduced scale model of an aquaculture recirculation tank was built in Plexiglas in order to use Particle Image Velocimetry and Particle Tracking Velocimetry techniques to measure fluid velocities, solid settling velocities, floc shape, and size.The optical techniques provided a description of how the phases organize in space and how this organization is related to the microphysics. Different flow rates and solid concentrations were used to develop varied configurations in the system. Models for floc settling velocity based on fractal theory were calibrated. Cohesive sediments from fish food were observed in long-term experiments at constant fluid shear rate and constant gas flow rates in the recirculation tank. Images were obtained each five minutes. Image analysis provided us with floc settling velocity data and floc size. Using floc settling velocity data, floc density data were obtained for different diameters at equilibrium conditions, after one hour or larger experiments. Statistical analysis of floc velocities for different floc sizes allowed us to obtain an expression for the drag coefficient as a function of floc particle Reynolds number (R * =ρ w WsD/μ) where Ws is the floc settling velocity, D is floc diameter, ρ w is the liquid mass density and μ is the liquid viscosity. The results are helpful to improve cohesive sediment removal in aquaculture recirculation tanks by providing a tool to obtain optimum sedimentation rates as a function of fluid shear rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.