PURPOSE Quantifying the risk of cancer associated with pathogenic mutations in germline cancer susceptibility genes—that is, penetrance—enables the personalization of preventive management strategies. Conducting a meta-analysis is the best way to obtain robust risk estimates. We have previously developed a natural language processing (NLP) –based abstract classifier which classifies abstracts as relevant to penetrance, prevalence of mutations, both, or neither. In this work, we evaluate the performance of this NLP-based procedure. MATERIALS AND METHODS We compared the semiautomated NLP-based procedure, which involves automated abstract classification and text mining, followed by human review of identified studies, with the traditional procedure that requires human review of all studies. Ten high-quality gene–cancer penetrance meta-analyses spanning 16 gene–cancer associations were used as the gold standard by which to evaluate the performance of our procedure. For each meta-analysis, we evaluated the number of abstracts that required human review (workload) and the ability to identify the studies that were included by the authors in their quantitative analysis (coverage). RESULTS Compared with the traditional procedure, the semiautomated NLP-based procedure led to a lower workload across all 10 meta-analyses, with an overall 84% reduction (2,774 abstracts v 16,941 abstracts) in the amount of human review required. Overall coverage was 93%—we are able to identify 132 of 142 studies—before reviewing references of identified studies. Reasons for the 10 missed studies included blank and poorly written abstracts. After reviewing references, nine of the previously missed studies were identified and coverage improved to 99% (141 of 142 studies). CONCLUSION We demonstrated that an NLP-based procedure can significantly reduce the review workload without compromising the ability to identify relevant studies. NLP algorithms have promising potential for reducing human efforts in the literature review process.
PURPOSE:The medical literature relevant to germline genetics is growing exponentially. Clinicians need tools monitoring and prioritizing the literature to understand the clinical implications of the pathogenic genetic variants. We developed and evaluated two machine learning models to classify abstracts as relevant to the penetrance (risk of cancer for germline mutation carriers) or prevalence of germline genetic mutations.
METHODS:We conducted literature searches in PubMed and retrieved paper titles and abstracts to create an annotated dataset for training and evaluating the two machine learning classification models. Our first model is a support vector machine (SVM) which learns a linear decision rule based on the bag-of-ngrams representation of each title and abstract. Our second model is a convolutional neural network (CNN) which learns a complex nonlinear decision rule based on the raw title and abstract. We evaluated the performance of the two models on the classification of papers as relevant to penetrance or prevalence.
RESULTS:For penetrance classification, we annotated 3740 paper titles and abstracts and used 60% for training the model, 20% for tuning the model, and 20% for evaluating the model. The SVM model achieves 89.53% accuracy (percentage of papers that were correctly classified) while the CNN model achieves 88.95 % accuracy. For prevalence classification, we annotated 3753 paper titles and abstracts. The SVM model achieves 89.14% accuracy while the CNN model achieves 89.13 % accuracy. CONCLUSION: Our models achieve high accuracy in classifying abstracts as relevant to penetrance or prevalence. By facilitating literature review, this tool could help clinicians and researchers keep abreast of the burgeoning knowledge of gene-cancer associations and keep the knowledge bases for clinical decision support tools up to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.