We studied the dynamics of a cationic surfactant monolayer, Gemini 12-2-12, at the air−water interface for surfactant aqueous solutions at concentrations below the critical micelle concentration. We present surface rheology experiments performed in a Langmuir trough by the oscillatory barrier technique. From these, we found negative surface viscosities at certain frequencies. We demonstrate that this unphysical result is a consequence of an unconsidered surfactant dynamics within the interfacial region. By surface pressure relaxation experiments, after a sudden modification of the interfacial area and by dynamic surface tension and surface potential measurements, several relaxation phenomena and relaxation times were identified. We found that surfactant adsorption and desorption processes are asymmetric: the characteristic times and the number of processes involved in the mechanisms of adsorption and desorption are different. This asymmetry invalidates the usual data analysis procedure that leads to the negative viscosities. Similar mechanisms could be at the origin of the negative viscosities reported in other systems, a possibility that remains to be explored.
Avalanches of rupturing bubbles play an important role in the dynamics of collapse of macroscopic liquid foams. We hypothesized that the occurrence of cascades of rupturing bubbles in foams depends, at least in part, on the power released during the rupture of a bubble. In this paper, we present results on the dynamics of single bubble bursting obtained by analyzing the pressure wave (sound) emitted by the bubble when collapsing. We found that the released energy varies linearly with bubble size, the frequency of the emitted sound follows a power law with exponent 3/2 (compatible with the Helmholtz resonator model) and the duration of a rupturing event seems to be independent of bubble size. To correlate the dynamics of individual bubbles with the dynamics of foams, we studied the occurrence of avalanches on bubble rafts and found that the phenomenon appears to be a self-organized criticality (SOC) process. The distribution functions for the size of the avalanches are a power law with exponents between 2 and 3, depending on the surfactant concentration. The distribution of times between ruptures also follows a power law with exponents close to 1, independently of the surfactant concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.