The field of human cell research is rapidly changing due to the introduction of microphysiological systems (MPSs), which commonly feature two stacked microchannels separated by a porous membrane for in-vitro barrier modeling. An essential component to adequately representing a subset of human organ or tissue functions in these microfluidic systems is the concentration distribution of the bio-species involved. In particular, when different cell types are cultured, a delicate balance between media mixing and cellular signaling is required for long-term maintenance of the cellular co-culture. In this work, we experimentally measured the effects of various control parameters on the transient and steady average molecular concentration at the bilayer device outlet. Using these experimental results for validation, we then numerically investigated the concentration distributions due to the convection-diffusion mass transport in both microchannels. The effects of media flow rate, separation membrane porosity, molecular size, microchannel dimensions and flow direction have been systematically characterized. The transient response is found to be negligible for cell co-cultures lasting several days, while the steady-state concentration distribution is dominated by the media flow rate and separation membrane porosity. Numerically computed concentration profiles reveal self-similarity characteristics featuring a diffusive boundary layer, which can be manipulated for successful maintenance of cell co-culture with limited media mixing and enhanced cell signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.